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Abstract

Over the last decade, many notable methods have emerged
to tackle the computational resource challenge of the high
resolution image recognition (HRIR). They typically focus
on identifying and aggregating a few salient regions for
classification, discarding sub-salient areas for low train-
ing consumption. Nevertheless, many HRIR tasks neces-
sitate the exploration of wider regions to model objects
and contexts, which limits their performance in such sce-
narios. To address this issue, we present a DBPS strat-
egy to enable training with more patches at low consump-
tion. Specifically, in addition to a fundamental buffer that
stores the embeddings of most salient patches, DBPS fur-
ther employs an auxiliary buffer to recycle those sub-salient
ones. To reduce the computational cost associated with
gradients of sub-salient patches, these patches are primar-
ily used in the forward pass to provide sufficient informa-
tion for classification. Meanwhile, only the gradients of
the salient patches are back-propagated to update the entire
network. Moreover, we design a Multiple Instance Learn-
ing (MIL) architecture that leverages aggregated informa-
tion from salient patches to filter out uninformative back-
ground within sub-salient patches for better accuracy. Be-
sides, we introduce the random patch drop to accelerate
training process and uncover informative regions. Exper-
iment results demonstrate the superiority of our method in
terms of both accuracy and training consumption against
other advanced methods. The code is available in the
https://github.com/Qinrong—-NKU/DBPS.

*Corresponding author.

1. Introduction
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(c) Salient and Sub-Salient Patches

(d) Pavement Distress Recognition
Figure 1. In the pavement image (a) of CQU-BPDD dataset [47],
a small number of salient patches (b) are insufficient for model-
ing the distress object and corresponding context. The introduc-
tion of sub-salient patches (c) supplements the context for bet-
ter prediction. As shown in (d), our method utilizes both salient
and sub-salient patches for significant accuracy gains while main-
taining low training consumption. The ‘IPS-M° indicates the IPS-
Transformer trained with M patches and ‘Ours-M-S‘ indicates our
model optimized with M salient patches and S sub-salient ones.

High resolution images exceeding megapixel have found
extensive real-world applications, with HRIR offering sig-
nificant benefits across various domains [4]. For instance,
it aids autopilot systems in accurately identifying distant
small traffic signs [44] and assists doctors in making di-
agnoses based on gigapixel medical images. Despite re-



cent advancements in image recognition achieved through
deep learning technique, the emphasis has primarily been
on downsized images [16, 19]. However, performing recog-
nition tasks on high resolution images presents a greater
challenge. On the one hand, directly processing high res-
olution images with conventional methods often leads to
memory overflow. On the other hand, downsizing the orig-
inal high resolution images to reduce memory consumption
results in a loss of discriminative information and thus a no-
table decline in recognition performance [24, 43].

Although some previous studies have proposed ad-
dressing computational resource bottlenecks caused by the
high resolution through diverse strategies like non-uniform
downsizing, lightweight network design, etc. [35, 36, 40,
42, 46, 50, 53], the strategy of selecting and aggregating
salient regions has demonstrated superior performance in
terms of both memory consumption and accuracy [15, 17,
37, 38, 54, 59]. For example, [11, 24] leverage attention
modules to select salient image patches across downsized
images and finalize the classification using the full resolu-
tion counterparts of these patches. Furthermore, [9, 26, 51]
incorporate this strategy into a multi-stage hierarchical
select-and-zoom framework to process gigapixel images.
Noting the unreliability of patch selection under downsized
images, IPS-Transformer [5] performs both patch selection
and aggregation with a learnable query and cross-attention
layer. This eliminates the need for training a selection mod-
ule specifically and allows efficient patch selection on orig-
inal images in no-gradient mode.

However, the majority of these solutions are founded on
the strict assumption that both the objects and context of
the scenes can be well modeled by a small number of image
patches. In fact, for many HRIR scenes, valuable infor-
mation may be distributed across the entire image, as illus-
trated by the pavement distress depicted in Fig. | (a). This
suggests that even with the discriminative details (Fig. |
(b)), sufficient image patches (Fig. 1 (c)) are still neces-
sary for adequately modeling objects and contexts in these
challenging HRIR tasks. Therefore, as shown in Fig. |
(d), existing methods may fall short in achieving high ac-
curacy. While simply increasing the number of selected
patches could potentially improve performance, encoding
these additional patches in gradient mode will bring signif-
icant increase in training consumption. Another straight-
forward solution is to employ a limited number of patches
for training and utilize more patches as input for inference.
However, as demonstrated in Sec. 4.3, this solution hardly
improves recognition performance due to the information
gap between these two stages. Thus, it is necessary to find a
method to introduce more patches for training without im-
posing significant cost for HRIR.

Based on the aforementioned observations, we propose
a Dual-Buffer Patch Selection (DBPS) strategy to handle

more input information while keeping low consumption
during the training stage. Specifically, besides a fundamen-
tal buffer to store the embeddings of the patches with the
highest saliency scores, DBPS employs an auxiliary buffer
to recycle the embeddings of the sub-salient patches, which
have slightly lower scores and are typically discarded in pre-
vious works. And we endow them with different functional-
ities in DBPS. Both types of embeddings will be aggregated
to provide information for classification in the forward pass,
but only the gradients of the salient embeddings are back-
propagated to optimize the encoder directly. Though sub-
salient embeddings could not optimize the encoder through
gradient back-propagation, they still indirectly optimize the
encoder by contributing to the final output with supple-
mented context. Since the sub-salient patch embeddings
are all recycled from the patch selection stage and will not
back-propagate gradient to the encoder, their participation
barely affects the consumption. Considering the hidden
uninformative backgrounds inside the sub-salient patches,
we further devise a dual-attention MIL architecture to pro-
cess these two buffers through a progressive aggregation
way. Firstly, the most salient patch embeddings are fed into
a cross-attention-based transformer to generate the salient
query. This query is utilized to further aggregate the embed-
dings of the sub-salient patches for suppressing the uninfor-
mative backgrounds inside sub-salient regions. Moreover,
we introduce the random patch drop technique to reduce the
patches that need to be traversed and uncover more infor-
mative image patches. Results on six challenging datasets
demonstrate the superiority of our method in terms of accu-
racy and training consumption.

Our contributions are three-fold: 1) We propose a Dual-
Buffer Patch Selection (DBPS) strategy to ensure sufficient
patches for training while maintaining low training con-
sumption. To the best of our knowledge, we are the first
to focus on the challenges of scattered distribution in HRIR
and suggest introducing sub-salient regions as context sup-
plements in a no-gradient way to address it. 2) To sup-
press the backgrounds inside sub-salient patches, we devise
a dual-attention MIL architecture to generate salient query
for the aggregation of sub-salient embeddings. Besides, we
introduce the random patch drop to accelerate training and
uncover informative regions. 3) We conduct experiments
on six HRIR datasets to demonstrate the superiority of our
model in terms of accuracy and training consumption.

2. Related Work
2.1. High-Resolution Image Recognition

HRIR is common and valuable in downstream applications,
and has gradually attracted the attention of researchers in
recent years [4, 14, 24, 26, 36, 40, 47]. Previous works of
HRIR mainly focus on using sparse computation to utilize



the spatial redundancy of high-resolution images to save
memory usage [3, 9, 11, 15, 24, 54]. With the image re-
gions of interest identified on the downsized images, the
network only needs to process part of the images at high-
resolution. This idea can be traced back to early fast im-
age processing methods [12, 25], and can also be associ-
ated with human saccadic eye movements, which may be
informed by peripheral vision [6]. To process gigapixel im-
ages, [26, 38, 51] expand this idea to a multi-stage sampling
strategy, successively adopting attention sampling operation
at increasing resolution to find the salient image patches.
However, the resolution of the downsized image may be
too small for finding salient patches, while the increasing
of the resolution will bring more memory usage [5]. IPS-
Transformer [5] finishes both informative region selection
and patch embedding aggregation through a learnable query
and a cross-attention layer. Therefore, it does not need to
train a selection module specifically, which allows the effi-
cient selection of informative patches on the original images
in no-gradient mode. In this paper, we use two embedding
buffers to identify the most salient and sub-salient patches,
and aggregate the gradient salient patch embeddings and the
no-gradient sub-salient ones for final classification and net-
work training. The gradient-free sub-salient embeddings
indirectly optimize the encoder for better performance by
affecting the output with supplemented context.

2.2. Multiple Instance Learning

The Multiple Instance Learning (MIL) is first introduced
into weakly supervised learning [13] and has achieved sig-
nificant success in gigapixel whole-slide image (WSI) clas-
sification task [7, 27, 29, 45, 49, 57]. For instance, Ilse et
al. [23] firstly devise an attention-based MIL architecture,
which allocates contribution information to each instance
through trainable attention weights. And Dual-stream MIL
(DS-MIL) [28] calculates the similarity between the most
significant instance and the others as the corresponding at-
tention weights. In contrast to the previous approaches that
seek to identify salient instances, Tang et al. [48] aim to en-
hance the capability of MIL models by intentionally mask-
ing the most prominent instances to uncover hard instances.

Image patch selection and the aggregation of patch em-
beddings are the two major parts of HRIR. Therefore, ef-
ficient aggregation through MIL architecture and associat-
ing MIL with patch selection have attracted the attention
of researchers [5, 11, 24, 26, 51]. For instance, [24, 26]
propose to utilize the attention scores computed by patch
selection module as a MIL operator for embedding aggre-
gation. Differential Patch Selection (DPS) [11] verifies the
advantages of self-attention in aggregating patch embed-
dings. Recently, IPS-Transformer [5] introduces learnable
query and cross-attention to unify patch selection and em-
bedding aggregation, and has demonstrated its efficiency. In

this work, we devise a dual-attention MIL, which adaptively
generates salient query for the aggregation of sub-salient
patch embeddings. Moreover, we introduce random patch
drop technique to uncover more informative instances.

3. Methodology
3.1. Limitation of Patch Selection Strategy in HRIR

In this sub-section, we take the most advanced HRIR
method IPS-Transformer [5] as an example to introduce
the widely applied single buffer patch selection strategy in
HRIR methods and explain its limitation. Specifically, in
IPS-Transformer, given a high resolution image, it is ini-
tially divided into IV patches. Then each patch x is embed-
ded into an embedding e € R” by an encoder as:

e = F(x), (€]

where F(-) denotes the mapping function of the encoder.
With a learnable query token g € R, the attention score a
of & can be computed through a cross-attention layer:

a = QKT
N

where query Q = gW? and key K = eW?" are re-
spectively the linear transforms of ¢ € R” and e through
W1 e RPXD and Wk ¢ RP*D' And a can serve as a
metric for the saliency of each patch. Because computing
the saliency scores of all patches in parallel can result in
GPU memory overflow, the most salient patch embeddings
can be selected iteratively with the assistance of a buffer
P!,. Here t represents a specific update step, and M de-
notes the capacity of the buffer. And the buffer concept here
represents a preset space in GPU for storing tensors. Let us
note that all these operations occur in no-gradient mode.

The final selected salient embeddings will be re-
embedded in gradient mode and then aggregated for clas-
sification and optimization. Besides the ideal scenarios
like recognizing traffic signs where objects are concen-
trated within a few patches, many HRIR tasks necessitate
the model to select more patches for the exploration of a
broader perspective. However, encoding more patches in
gradient mode can easily exceed the memory limit [5, 11,
24, 26]. Conversely, using a small number of patches for
training and more for test, as shown in Tab. [, barely im-
proves the accuracy. This dilemma necessitates a resource-
efficient patch utilization method to introduce more patches
for training without imposing significant cost.

3.2. Dual-Buffer Patch Selection

In this sub-section, we further introduce our proposed
DBPS strategy for addressing the above mentioned limita-
tion. Specifically, in addition to the aforementioned fun-
damental buffer P},, DBPS further employs an auxiliary

@
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Figure 2. The pipeline of our proposed method. We firstly divide the high-resolution image into image patches and randomly drop some
of them. Next, we initial two buffers PY; and PZ, and iteratively update them in no-gradient mode to find the most salient patches and
the sub-salient patches. After patch selection, Py; is embedded again in gradient mode, and then input into the cross-attention layer to be
aggregated. The aggregated embedding can be denoted as the salient query for the better aggregation of no-gradient PZ.

buffer P{ to store and recycle the embeddings of the sub-
salient S’ patches that are originally discarded in the single
patch selection. Pg has larger capacity than P}, (i.e., S >
M). As shown in Fig. 2, P¢ is initialized as an empty buffer
as P{ = {}, while P!, is initialized with the embeddings of
the first M patches (P, = {e1, -+ , e, - ,en}). During
the traversal of the rest (N — M) patches, a collection of L
patch embeddings C', is considered at each step. After ob-
taining the scores of the existing (M + S + L) embeddings
in Pyt Py~ and O ', Pip ! and PY " will be updated
to be P, and PZ through selecting the new M most salient
embeddings and the new S sub-salient ones, respectively:
Py = Top-M{Py; ' UPS™  UCT AusssL}, ()
P§ =Top-S{(Pi; ' UP{ ' UCT™Y) — Pir|Aysssr}, (4
where A /451, is the score vector of (M + S+ L) embed-
dings, and the maximal traversal stepis T = [(N —M)/L].
As explained earlier, re-embedding the two types of
patch embeddings in gradient mode will lead to GPU mem-
ory overflow. To ensure low computational resource in-
creasing, we suggest to only re-embed P7; in gradient mode
and add their aggregation Z; with the aggregation Z of no-
gradient P§" for the final classification. Compared to the
original single buffer patch selection, our DBPS only recy-
cles the originally discarded sub-salient patch embeddings,
hence just increasing ultra-low cost of storing P{T. The ad-
dition of no-gradient sub-salient patch embeddings can di-
rectly optimize aggregation module and indirectly optimize

the encoder by providing necessary context information that
significantly affects final classification. More concisely,
P will not introduce additional gradients to optimize the
encoder, but only improves the prediction and adjusts the
gradients belonging to the re-embedded salient patch em-
beddings PJ\E for better optimization of the encoder. The
pseudo code of DBPS is available in the Algorithm 1.

3.3. Dual-Attention Embedding Aggregation

Although there is considerable context information among
PIT, introducing PZ" for final classification may also bring
uninformative backgrounds, which will limit the accuracy
gains or even degrade model performance [5, 11, 28, 33] .
To address this challenge, inspired by [28], we propose a
dual-attention MIL architecture as our aggregation module
(as shown in the right part of Fig. 2), which processes the
PT and P with a progressive aggregation way:

1). Classic HRIR works [5, 11, 24, 26] have demon-
strated the superiority of attention-based MIL operations
in patch embedding aggregation, while the cross-attention
transformer is an efficient MIL architecture. Therefore, we
employ cross-attention transformer as the basic architecture
of our aggregation module. PJ\E with high salient scores and
a learnable query q are firstly fed into the cross-attention
layer to get the aggregation Z; of the PJ\T{:

Z1=V(q,Pi;) +a, )

where V(+) denotes a cross-attention layer based on Eq. 2.



Note that the scores of the embeddings in P7; will be nor-
malized in V(-) through Softmazx(-) for valid aggregation.

2). Since the embeddings in PJE are relatively salient,
Z, can be considered to contain relatively little back-
grounds. Therefore, we replace the input-irrelevant g with
Z, as the adaptive salient query for the aggregation of PéT:

Z> =V(LN(Z:),Ps") = V(LN(V(q, Py;) + q), P§ ), (6)

Z =LN(V(q,Py;) +q+V(LN(V(q, Pi) +q), P§")), (1)

where LN (-) represents layer normalization [2] and Z rep-
resents the total aggregation. According to the Eq. 6, the
attention scores of P4 are not only related to g but are also
their correlation with the salient embeddings in PAE
Finally, we adopt a 3-layer fully connected layers
MLP() to get the ultimate embedding Z" for classification:

Z = LN(MLP(Z) + Z). ®)

The dual-attention MIL aims to allocate greater attention
scores to sub-salient embeddings that are more correlated
to the P{;, and thus suppress uninformative backgrounds.

3.4. Boosting HRIR with Random Patch Drop

In recent years, the random patch drop technique has
achieved impressive success in self-supervised pre-training
tasks [1, 20, 52, 58]. Based on the natures of HRIR, we sug-
gest that the random patch drop and the HRIR task are also a
perfect match. Firstly, the HRIR methods are mainly based
on the patch-selection-aggregation architecture, which al-
lows the random patch drop to be directly applied for prun-
ing the training input without additional designs. Besides,
there is a significant spatial redundancy in high-resolution
images, which saves the random patch drop from causing
severe information loss and disturbing model training.
Therefore, we introduce the random patch drop tech-
nique to boost the training process of HRIR models in terms
of effectiveness and efficiency. Precisely, given a preset
drop ratio 7 € [0, 1) and total N patches of an image, only
[(1—=7)x (N — M)+ M] patches are randomly kept for
patch selection phase. Albeit simple, random patch drop
can reduce the number of patches to be traversed, thereby
accelerating training and saving more GPU memory. Be-
sides, it could also prevent the model from overfitting on
simple or incorrect regions. Moreover, compared to com-
petitors such as random erasing that employs a single rect-
angle region, the randomly dropped patches are uniformly
distributed across the image, which leads to better perfor-
mance when a large r is adopted (More details in Sec. 4.5).

3.5. Efficiency Analysis

Finally, we analyze the efficiency of DBPS strategy. Let
O(1) be the computational cost of encoding and scoring a

Algorithm 1: The pseudo code of DBPS

1 with torch.no_grad():

2 # Initialization

3 M_buf = net.encode (patches[:, :M].cuda())

4 idx = torch.arange (N, dtype=torch.int64,

device=device) .unsqueeze (0) .expand (B, -1)

5 M.idx = idx[:, :M]

6 S buf = torch.zeros((B, S, D)) .cuda()

7 A_S = torch.zeros((B, S)).cuda() - 1000

8 # Patch selection in no-gradient mode

9 for i in range(T):

10 start = i x L + M

11 end = min(start + L, N)

12 L.idx = idx[:, start:end]

13 L.buf = net.encode (patches[L.idx].cuda())

14 Mbuf, M.idx, AML = net.selectl (Mbuf,
Lbuf, M.idx, L.idx, M)

15 Sbuf, A.S = net.select2 (M-buf, L buf,
S_buf, AML, AS, M, S)

16 # Re-embedding salient patches in gradient mode

17 M-patch =net.select3(patches, M-idx) .cuda/()

18 Mbuf = net.encode (M-patch))

19 # Aggregating all embeddings in gradient mode
20 image_emb = net.transf (M-buf, S_buf)

21 preds = net.get_preds (image_emb)

patch at no-gradient mode while O(1) be that of encoding
a patch in gradient mode, Besides, O(1) is the computa-
tional cost of aggregating a patch embedding at gradient
mode, and G(1) denotes the memory required to store a
patch embedding in GPU. Note that O(1) > O(1) > O(1).
The computational cost of the single buffer patch selec-
tion strategy during training could be denoted as O(NV) +
O(M) + O(M) and that of the DBPS could be denoted as
O(N)+O(M)+O(M+S). The buffer memory of the sin-
gle buffer patch selection strategy during training could be
denoted as G(M +L) and that of the DBPS could be denoted
as G(M + L + S). It can be concluded that DBPS strategy
introduces S extra patches during training for significant ac-
curacy gains while only incurring the ultra-low additional
cost of O(M + S) and G(S). After applying random patch
drop, our cost and buffer memory can be further reduced to
O([(1=7r)x (N=M)+M])+O(M)+O(M + S) and
G(M + [(1 —7r) x L] + S), which are similar or even less
than that of the single buffer patch selection strategy.

4. Experiments

4.1. Datasets

We perform experiments on six HRIR datasets: 1) the CQU-
BPDD dataset [47], 2) the Functional Map of the World
(fMoW) dataset [10], 3) the Swedish Traffic Signs Recog-
nition dataset [24], 4) the CAMELYON16 dataset [32], 5)
the DDR dataset [30], 6) the MAME dataset [39].

4.2. Evaluation Metrics and Settings

Following [5], we use maximum GPU memory usage
(VRAM) and batch training runtime (Time) for a batch size
of 16 to evaluate computational efficiency, whose corre-
sponding units are GB and ms. We set L = [L x (1 — )]



Table 1. Results of different methods and settings on six downstream datasets, in which different solutions are highlighted with different
colors. The ‘Scale’ represents the input image scale. The ‘Ratio* represents the patch drop ratio. The ‘M * represents the number of salient
image patches for training. The ‘M’‘ represents the number of salient image patches for evaluation. The ‘S represents the number of
sub-salient image patches for training and evaluation. The ‘U N “ represents that the corresponding value is unknown. The ‘N A* represents

corresponding value is not available in the method.

CQU-BPDD (Pavement)

Functional Map of the World (Satellite)

Methods Scale Rato M M’ S ACC VRAM| Time | | Methods Scale Ratio M M’ S ACC VRAM/ Timel
03x NA NA NA NA 759 0.8 32 03x NA NA NA NA 766 0.69 25
ResNetIBLI9T | "\ NA NA NA NA 813 70 212 |[RSNUBIOT N Ny NA NA N4 802 575 163
KIPRN [41] 05x NA NA NA NA 821 UN UN | Zoom-In [26] 1x 0.0 8 8 NA 729 UN UN
WSPLIN [21] 1x NA NA NA NA 3815 UN UN | Zoom-In+ [26] 1x 0.0 8 8 NA 743 UN UN
1x 0.0 108 108 NA 822 8.2 279 1x 0.0 81 81 NA 80.1 6.16 212
IPSformer [5] 1x 00 36 36 NA 3815 3.1 194 IPSformer [5] 1x 00 36 36 NA 783 3.1 171
(Baseline) 1x 0.0 12 108 NA 69.9 1.3 135 (Baseline) 1x 0.0 12 81 NA 763 1.3 110
1x 0.0 12 36 NA 785 1.3 135 1x 0.0 12 36 NA 769 1.3 110
Ix 0.0 12 12 NA 80.1 1.3 135 Ix 0.0 12 12 NA 771 1.3 110
1x 0.0 12 12 60 825 1.3 136 1x 00 36 36 24 799 3.1 172
1x 0.2 12 12 60 826 1.3 117 1x 0.1 36 36 24 804 3.0 164
DBPSformer 1x 0.3 12 12 60 829 1.2 112 | DBPSformer 1x 02 36 36 24 805 29 156
(ours) 1x 0.3 12 12 48 829 1.2 111 (ours) 1x 0.3 12 12 48 783 1.2 96
1x 0.3 12 12 36 835 1.2 111 1x 0.3 12 12 36 783 1.2 96
1x 0.3 12 12 24 832 1.2 111 1x 0.3 12 12 24 788 1.2 96
DDR (Retinopathy) MAME (Artwork)
Methods Scale Rato M M’ S ACC VRAM] Time | | Methods Scale Ratio M M’ S ACC VRAM| Time |
03x NA NA NA NA 734 3.8 98 03x NA NA NA NA 804 0.8 30
ResNet-S0[19) 175« NA NA NA NA 803 214 568 |ReNCBUOT |7 Nvao NA NA NA 865 70 211
CBANet [18] 05x NA NA NA NA 717 UN UN DPSformer [11] 1x 00 30 30 NA 840 42 403
CANet [31] 05x NA NA NA NA 715 UN UN 1x 0.0 10 10 NA 80.2 23 182
1x 0.0 18 18 NA 80. 19.9 833 1x 00 100 100 NA 86.7 7.5 259
IPSformer [3] 1x 0.0 9 9 NA 794 10.3 586 IPSformer [5] 1x 00 30 30 NA 855 2.6 170
(Baseline) 1x 0.0 4 18 NA 748 49 442 (Baseline) 1x 0.0 10 100 NA 813 1.3 119
1x 0.0 4 9 NA 752 4.9 442 1x 0.0 10 30 NA 837 1.3 119
1x 0.0 4 4 NA 710 4.9 442 1x 0.0 10 10 NA 839 1.3 119
1x 0.0 4 4 20 80.1 4.9 443 1% 0.0 30 30 45 86.1 2.6 170
1x 0.1 4 4 20 80.5 4.9 394 1x 0.1 30 30 45 86.6 2.6 160
DBPSformer 1x 0.2 4 4 20 81.0 4.9 370 | DBPSformer 1x 02 30 30 45 868 25 151
(ours) 1x 03 4 4 20 807 4.9 343 (ours) Ix 03 10 10 60 856 1.1 96
1x 0.3 4 4 16 80.7 4.9 342 1x 0.3 10 10 45 859 1.1 96
1x 0.3 4 4 12 80.5 4.9 342 1x 0.3 10 10 30 855 1.1 96
Swedish Traffic Signs (Traffic Signs) CAMELYON16 (WSI)
Methods Scale Rato M M’ S ACC VRAM] Time | | Methods Scale Rato M M’ S AUC VRAM/| Timel
RPSformer [5] 1x 0.0 10 10 NA 50.7 1.3 31 DSMIL-LC [28] | 1x 0.0 8k 8k NA 91.7 UN UN
} 1x 0.0 2 2 NA 283 0.9 26 CLAM [34] 1x 0.0 42k 42k NA 93.6 UN UN
DPSformer [11] 1x 0.0 10 10 NA 94.0 3.5 337 | CLAM-SB [56] Ix NA UN UN NA 942 UN UN
1x 0.0 2 2 NA 972 2.5 296 | Challenge [55] 1x NA NA NA NA 925 UN UN
TopMIL [8] 1x 0.0 10 10 NA 977 4.5 109 1x 00 5k 5k NA 718 19.8 84
Ix 0.0 2 2 NA 982 4.5 96 TopMIL [8] Ix 0.0 1k 1k NA 762 19.8 76
DeepMIL [23] 1x 00 192 192 NA 96.2 14.2 323 1x 00 100 100 NA 844 19.8 74
DeepMIL+ [23] 1x 00 192 192 NA 977 14.3 323 1x 0.0 70k 70k NA 945 4.5 26
GF-ResNet [22] Ix NA NA NA NA 895 1.9 UN | DeepMIL [23] Ix 0.0 50k 50k NA 938 22.5 110
GF-ResNet+ [22] | 1x NA NA NA NA 915 2.8 UN 1x 0.0 10k 10k NA 84.1 31.5 150
IPSformer [5] 1x 00 192 192 NA 984 14.3 495 | IPSformer [5] 1x 00 S5k 5k NA 93.1 4.7 315
(Baseline) 1x 0.0 10 10 NA 986 1.6 202 (Baseline) 1x 0.0 1k 1k NA 975 4.1 313
1x 000 10 10 20 992 1.6 205 1x 0.0 1k 1k 4k 983 3.9 317
DBPSformer 1x 0.05 10 10 20 993 L5 196 | DBPSformer 1x 0.1 1k 1k 4k 98.6 37 297
(ours) Ix 0.10 10 10 20 993 1.4 188 (ours) Ix 0.2 1k 1k 4k 984 3.6 275
1x 015 10 10 20 98.6 1.4 182 1x 0.3 1k 1k 4k 982 34 253

when random patch drop is applied with ratio r. For CQU-
BPDD, fMoM, MAME, and Swedish Traffic Signs Recog-
nition, we adopt ResNet-18 [19] with ImageNet-1k weights
as encoder for all methods, while ResNet-50 [19] is used
for DDR dataset. For CAMELYON16, we adopt ResNet-
50 [19] pre-trained on CAMELYONI16 as the encoder for
our methods and then fixed. The patch size of DDR is
200x200, while that of CAMELYONI16 is 256x256. And
the patch sizes of the other four datasets are 100x100.

4.3. Validity of Our DBPS strategy

Our work is built on the assumption that for many HRIR
tasks, sufficient image patches are necessary to adequately
model objects and contexts. To prove this assumption, we
firstly evaluate three types of IPS-Transformer [5]. The first
two are trained with a small number of patches, but sepa-
rately uses insufficient and sufficient patches for evaluation,
and the last one is always with sufficient patches. The re-
sults of six HRIR tasks are shown in Tab. 1. We can firstly



Table 2. Ablation experiments of our method on CQU-BPDD dataset and Functional Map of the World dataset. ‘Dual-Buffer® indicates the
use of dual-buffer patch selection strategy. ‘Dual-Attention® indicates the use of dual-attention Multiple Instance Learning. ‘Patch Drop
(r)‘ indicates the use of random patch drop training strategy with a certain drop ratio r. ‘IPS* indicates the IPS-Transformer.
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Figure 3. The comparison results between random erasing, random patch erasing, and our random patch drop under different ratio.

Table 3. The inference costs of both IPS-Transformer and our
method (both with batch size 16 for inference).

CQU-BPDD FMoW

Methods
Memory(MB) | Time(ms) | ‘ Memory(MB) |

Time(ms) |

1075.5
1076.4

105
108

890.1
891.7

82
83

IPS-Transformer
DBPS-Transformer (Ours)

observe that the IPS-Transformer trained with more patches
significantly performs better than those with less patches in
four challenging HRIR tasks (pavement, satellite, retinopa-
thy, and artwork). Another valuable observation is that the
IPS-Transformer trained with a small number of patches but
uses more for evaluation achieves the worst accuracy. These
observations indicate that introducing enough patches is
necessary for training effective HRIR models.

Although simply adding more patches during the train-
ing of IPS-Transformer can alleviate this problem, it brings
much more GPU memory and time consumption for train-
ing. However, this additional consumption could be avoided
if we utilize abundant sub-salient patches for training in a
no-gradient way. As shown in Tab. 1, our proposed DBPS
strategy has the ability to significantly boost the model with
the context information contained in sub-salient patches,
but almost no additional training costs are added due to the
no-gradient encoding. When boosting the DBPS strategy
with random patch drop technique, the training consump-
tion of our method could be reduced below that of the stan-
dard single buffer selection strategy. Besides, as reported
in Tab. 3, the additional inference cost brought by the extra
sub-salient patches is also quite low. This is because that
both two methods need to encode and score each patch dur-
ing patch selection stage, which means no cost difference.

And the aggregation of the sub-salient patch embeddings is
only operated within one cross-attention transformer layer,
which also means low computational cost.

4.4. Unanimous Improvements over HRIR Tasks

We conduct extensive experiments on diverse scenes to ver-
ify the strong generalization ability of our method in im-
proving HRIR, as shown in Tab. 1. For the HRIR tasks
that need sufficient patches (pavement, satellite, retinopa-
thy, and artwork), it is obvious that our method achieves the
most advanced performance with low training cost. By sup-
pressing uninformative regions and uncovering informative
ones through dual-attention MIL and random patch drop,
the accuracy of our method can even exceed that of the IPS-
Transformer trained with all patches, but uses much less
training consumption. For instance, our method gains about
85% memory reduction, 60% training time reduction, and
better performance than IPS-Transformer trained with even
all patches in pavement distress recognition.

And when focusing on the HRIR tasks that only need
a small part of the image to identify objects (traffic sign
and WSI), we are not surprised to see that our proposed
method also outperforms all comparison methods. This
finding further tells that with our dual attention MIL archi-
tecture, the introduced sub-salient patches will not disturb
model performance in simple situations, where the objects
are concentrated in a few regions. Another experimental
conclusion is that even in these scenes, instead of misdi-
recting model, random patch drop strategy with appropri-
ate ratio could still improve model performance. This con-
clusion demonstrates the severe spatial redundancy in high-
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Figure 4. The visualization results on CQU-BPDD dataset and Functional Map of the World dataset.

resolution images, thus random patch drop strategy rarely
loses all object information under appropriate drop ratio.

4.5. Ablation study

As shown in Tab. 2, from the first row and the second row, it
is obvious the DBPS strategy can significantly enhance the
performance of the model. It is because that DBPS strategy
could introduce more informative regions into model train-
ing to get a wider perspective. From the second and the third
rows, we can observe that by generating a salient query to
aggregate the sub-salient patch embeddings, the model per-
formance can be further improved. From the last three rows,
it can be observed that our method can achieve the best per-
formance with the addition of random patch drop.

And as shown in Fig. 3, it can be observed that random
patch drop outperforms random erasing and random patch
erasing under all ratios, while random patch erasing per-
forms better than random erasing. This conclusion along
with the results from the fourth to sixth rows in Tab. 2
proves that drop pattern and patch pattern are more appro-
priate than erasing pattern and rectangle pattern in HRIR.

4.6. Visualization

According to Fig. 4, we can firstly observe that the visual-
ization results of salient patches are highly consistent with
the most discriminative regions, but provide unclear infor-
mation due to the small coverage area. Besides, although
including some backgrounds, the visualization results of
sub-salient patches could completely supplement the rest
regions of interest. The combination of them can accurately

and completely cover the regions of objects and correspond-
ing context, which demonstrates the validity of our method.

5. Conclusion

In this paper, we propose the dual-buffer patch selection
(DBPS) method to increase the number of image patches
used in training HRIR models while keeping computational
resource consumption at a low level. To suppress the un-
informative background information in the sub-salient im-
age patches, we devise a dual-attention MIL architecture to
generate a salient query for aggregating sub-salient patch
embeddings. Additionally, we introduce an efficient ran-
dom patch drop training strategy to uncover informative im-
age regions while reducing both the training time and GPU
memory usage. Experimental results demonstrate the effec-
tiveness of our approach in terms of accuracy and training
consumption across various HRIR tasks and datasets.
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