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NCMNet: Neighbor Consistency Mining Network
for Two-View Correspondence Pruning

Xin Liu, Rong Qin, Junchi Yan, Senior Member, IEEE, and Jufeng Yang

Abstract—Correspondence pruning plays a crucial role in a variety of feature matching based tasks, which aims at identifying correct
correspondences (inliers) from initial ones. Seeking consistent k-nearest neighbors in both coordinate and feature spaces is a
prevalent strategy employed in previous approaches. However, the vicinity of an inlier contains numerous irregular false
correspondences (outliers), which leads them to mistakenly become neighbors according to the similarity constraint of nearest
neighbors. To tackle this issue, we propose a global-graph space to seek consistent neighbors with similar graph structures. This is
achieved by using a global connected graph to explicitly render the affinity relationship between correspondences based on the spatial
and feature consistency. Furthermore, to enhance the robustness of method for various matching scenes, we develop a neighbor
consistency block to adequately leverage the potential of three types of neighbors. The consistency can be progressively mined by
sequentially extracting intra-neighbor context and exploring inter-neighbor interactions. Ultimately, we present a Neighbor Consistency
Mining Network (NCMNet) to estimate the parametric models and remove outliers. Extensive experimental results demonstrate that the
proposed method outperforms other state-of-the-art methods on various benchmarks for two-view geometry estimation. Meanwhile,
four extended tasks, including remote sensing image registration, point cloud registration, 3D reconstruction, and visual localization,
are conducted to test the generalization ability. The source code is provided in https://github.com/xinliu29/NCMNet.

Index Terms—Correspondence pruning, feature matching, neighbor consistency, global-graph, parametric models
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1 INTRODUCTION

A CCURATELY estimating feature correspondences between
image pairs is essential for various computer vision tasks,

such as visual simultaneous localization and mapping [1], struc-
ture from motion [2], [3], image registration [4], [5], and visual
localization [6]. Given a pair of images, feature keypoints and their
corresponding descriptors can be obtained by employing existing
feature extraction methods, including handcrafted [7], [8], [9] and
learning-based works [10], [11], [12]. Then, we establish initial
correspondences either by imposing a similarity constraint on
descriptors or by utilizing advanced deep learning algorithms [7],
[11], [13]. However, abundant false correspondences (i.e., out-
liers) inevitably exist due to the limitation of local descriptors [14],
[15], [16], especially when facing severe illumination changes,
viewpoint variations, occlusions, blurs, etc. These outliers can
significantly impact the accuracy of downstream feature matching
based tasks. Hence, to alleviate this problem, correspondence
pruning [17], [18], [19] is used to further recognize correct
correspondences (i.e., inliers) from initial ones.

As the pioneer, RANSAC [20] and its variants [21], [22], [23]
employ a hypothesize-and-verify framework to seek an optimal
parametric model with maximum supporters iteratively. Their
stability gradually decreases as the inlier ratio decreases, primarily
due to the adverse impact of numerous outliers on model genera-
tion. In addition to searching for possible models in a greedy man-
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Fig. 1. The process of NCMNet. Initial correspondences (a) established
by SIFT [7] feature keypoints (b) contain numerous outliers. As illus-
trated in (c), our global-graph space can decrease the nearest-neighbor
distance of some inliers that are far from the sampled point in the other
two spaces, making it possible for them to become neighbors. We exhibit
three types of neighbors of a sampled inlier, including (d) spatial neigh-
bors, (e) feature-space neighbors, and (f) global-graph neighbors. The
neighbor search region is displayed with the yellow ellipse. Our NCMNet
is able to obtain excellent results as shown in (g). MLPs: the Multi-Layer
Perceptrons. GCN: the modified Graph Convolution Network.

ner, there are plenty of efforts leveraging the geometric property
of correspondence [15], [17], [24]. As illustrated in Fig. 1 (a), the
distribution of inliers and outliers has significant differences under
the 2D rigid transformation. That is, inliers commonly conform to
consistent constraints (e.g., similar lengths, angles, and motion),
while outliers are randomly distributed. Therefore, correspondence
consistency is considered as vital priori knowledge, and has been
extensively studied to distinguish inliers from outliers [14], [25].

https://github.com/xinliu29/NCMNet
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Neighbor consistency has received significant attention due to
its efficiency, which only focuses on few elements for each corre-
spondence. For well-defined neighbors, earlier studies [17], [26],
[16] utilize k-nearest neighbor (knn) search within the coordinate
space of original correspondences to find spatially consistent
correspondences, known as spatial neighbors. In recent years,
some learning-based works [27], [28] seek feature-consistent cor-
respondences, called feature-space neighbors, using knn search in
the high-dimensional feature space derived from network learning.
They demonstrate the promising advancements of neighbor con-
sistency for distinguishing correspondences. Nonetheless, initial
correspondences are often distributed unevenly across image pairs,
which can lead to the presence of numerous random outliers
in the vicinity of inliers, particularly in wide-baseline scenarios
with approximately 90% outliers [29], [27]. As a result, some
correspondences mistakenly become neighbors since they are
close to each other in the above two Euclidean spaces as illustrated
in Fig. 1 (c). As shown in Fig. 1 (d-e), in the coordinate and
feature spaces, the searched neighbors of a sampled inlier (blue
line) contain some unexpected outliers (red line). In fact, it’s
quite challenging to handle this situation only through similarity
constraints in Euclidean space [15], [30].

To tackle the above problem, we present a non-Euclidean
global-graph space. In particular, inliers tend to be consistent at
the global level [20], [15], [30]. That is, a sampled inlier has strong
connections with other inliers, and weak or no connections with
outliers. They are able to form similar graph structures [31], [32],
[33], [34], which can be well recognized by Graph Convolution
Network (GCN) [35]. Therefore, we capture this global consis-
tency by constructing a graph space where the neighbor definition
depends on the similarity of graph structure. We then adopt a
modified GCN to further explore this consistency and enhance
the long-range dependencies among correspondences. Compared
to the previous Euclidean spaces, the inliers have strong affinity
relationship in global-graph space. Thus, our global-graph space
is able to pull the distance of correspondences with similar graph
structures. These correspondences may be difficult to become
neighbors since their nearest-neighbor distance is large in the coor-
dinate and feature spaces as shown in Fig. 1 (c). More specifically,
we start by constructing a weighted global graph, where nodes
represent all correspondences, and edges denote their pairwise
affinities calculated using the consistency scores. To obtain a more
representative graph, we develop a spatial consistency based on the
length constraint for complementing the feature consistency used
in [36]. Next, we utilize a modified GCN [35] to obtain our global-
graph space. Ultimately, we employ knn search within this space
to identify globally consistent correspondences, referred to as
global-graph neighbors. Noteworthily, the global-graph neighbors
are not spatially close to the sampled correspondence as illustrated
in Fig. 1(f). In other words, it has a larger search region (refer to
the ablation) owing to our global-graph operation.

The spatial and feature-space neighbors, which concentrate on
the local scope of sampled correspondence, are searched by the
low-dimensional spatial similarity and high-dimensional feature
similarity, respectively. In contrast, our global-graph neighbors
focus on globally consistent neighbors with similar graph struc-
tures. As described in [37], [27], correspondence pruning requires
rich local and global contexts. Therefore, to enhance the robust-
ness for challenging matching scenarios, we design a neighbor
consistency (NC) block to fully leverage the potential of three
types of neighbors. NC block contains three essential components:

neighbor embedding construction, self-context extraction (SCE)
layer, and cross-context interaction (CCI) layer. To be specific, we
first construct three directed graphs according to different neigh-
bors as neighbor embeddings To extract corresponding neighbor
context features, SCE layer dynamically captures intra-neighbor
relationships and aggregates their contextual information using a
grouped convolution manner. CCI layer serves to further explore
their interactions. Due to the limited capacity of single cross-
attention branch used in [36], we design a hierarchical grouped
manner to effectively fuse and modulate inter-neighbor interactive
information. Building on NC block, we propose Neighbor Consis-
tency Mining Network (NCMNet) [36] and NCMNet+ with two
improvements to achieve two-view correspondence pruning.

The contributions are three-fold: (1) We propose a global-
graph space by constructing explicit connections among corre-
spondences via the spatial and feature consistency. It is used for
seeking consistent neighbors with similar graph structures. (2)
Leveraging the potential of three types of neighbors, we develop
the NC block to progressively mine the neighbor consistency
through the extraction of intra-neighbor context as well as the
exploration of inter-neighbor interactions. (3) We prove the effec-
tiveness and generalization ability of our approach by a series of
geometry estimation benchmarks and extended tasks.

This manuscript is an extension of our preliminary conference
version [36] appeared in CVPR 2023 with the following improve-
ments: (1) In the construction of weighted global graph, NCMNet
relies solely on feature consistency learned from networks, which
may be inaccurate due to the ambiguity of learning process. NCM-
Net+ applies the spatial consistency inherent in correspondences
to complement the feature consistency and enhance the reliability
of global-graph space. (2) In the CCI layer, NCMNet uses a single
cross-attention operation to explore inter-neighbor interaction. On
this basis, NCMNet+ utilizes an effective hierarchical grouped
manner to enrich information integration, thereby improving cor-
respondence pruning accuracy. (3) In terms of validation, NCMNet
focuses on estimating the essential matrix to recover camera poses.
We add the estimation of both fundamental matrix and homog-
raphy matrix in this work. Meanwhile, we conduct extensive
experiments and thorough ablation analysis to fully comprehend
our method. (4) We further extend the proposed method to tackle
four feature matching based tasks, including remote sensing image
registration, point cloud registration, 3D reconstruction, and visual
localization.

2 RELATED WORK

Generally, feature matching works can be classified into two major
directions: detector-free and detector-based approaches. Detector-
free methods [38], [39], [40], [41], [42] directly process the
image pairs and generate pixel-wise dense correspondences. While
these techniques are powerful, they often come with a significant
computational overhead due to the extremely large number of
pixels in images. In contrast, detector-based methods [7], [10],
[43], [44] have played a key role in the past decades, which con-
struct point-wise sparse correspondences by detecting distinctive
keypoints, and then match them. However, looking for accurate
feature correspondences is still complicated due to the unbalanced
distribution between inliers and outliers [45], [46]. This problem
can be mitigated by further applying correspondence pruning
methods. In the subsequent sections, we will provide a detailed
review for the relevant background materials in detail.
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2.1 RANSAC-Related Methods

As one of the the most well-known algorithms in recent decades,
RANSAC [20] applies a hypothesize-and-verify framework to
find the largest inlier set. More specifically, it randomly selects
a minimal subset of data to generate a hypothetical paramet-
ric model, e.g., 5 correspondences for essential matrix [47].
Then, the reliability of model can be verified by the number of
correspondences that conform to the model. This process will
continue until it reaches the predefined iterations or thresholds.
Following this framework, subsequent works [21], [22], [23],
[48] improve either efficiency or effectiveness using different
sampling and verification strategies. MLESAC [21] determines
the optimal model through maximizing the log likelihood of cor-
respondences to enhance the algorithm’s robustness. USAC [23]
reviews the related variants and presents a universal structure
based on some important considerations, showing better improve-
ments. MAGSAC [48] achieves superior performance by utilizing
σ-consensus to avoid the predefined inlier-outlier threshold. Fur-
thermore, some variations [49], [50], [51], [52], [53], [54] lever-
age deep learning pipelines to perfect the quality of parametric
models. These RANSAC-related works continue to be regarded
as standard solutions for outlier removal and parametric model
estimation. However, this random sampling strategy is sensitive
to outliers [45], [55], [56]. Their performance drops significantly
as the proportion of outliers in initial correspondences gradually
increases.

2.2 Learning-Based Methods

The development of deep learning technologies has led to several
pioneer works [49], [57], [18] that utilize neural networks to
accomplish correspondence pruning. For example, DSAC [49] de-
vises a differentiable counterpart of RANSAC based on the prob-
abilistic selection. Recently, PointNets [58], [59] utilize Multi-
Layer Perceptrons (MLPs) to deal with unordered and irregular
point sets, and have gained widespread attention. Drawing inspi-
ration from PointNets, LFGC [18] trains a permutation-equivariant
structure via MLPs to estimate inlier weights of correspondences
and regress camera poses encoded by the essential matrix. Simi-
larly, DFE [57] also adopts deep networks to predict inlier weights
that are used for fundamental matrix estimation.

Follow-up methods take this correspondence classification
paradigm as a de facto standard and improve the performance
in different manners. On the one hand, several works devise
diverse network structures to capture rich contextual information.
To obtain the local context, OANet [37] learns the soft assignment
matrix by a differentiable pooling layer for clustering input corre-
spondences. Then, it recovers the original size of correspondences
using an upsampling operation. It also transposes the dimension
of features to exploit the global context. T-Net [60] introduces a
T-shaped network architecture to integrate the outputs of iterative
sub-networks. ConvMatch [61] develops a regular motion field
and explores the possibility of using the convolutional neural
network to capture context. On the other hand, some researchers
take advantage of attention mechanism [62] to improve the rep-
resentation of crucial features. ACNe [63] leverages attention
weights for normalizing the features from local and global aspects.
ANA-Net [64] calculates the similarity of attention weights for
discovering attention-consistent correspondences. The multi-scale
attention offered by MSA-Net [65] and the grouped residual atten-
tion used in PGFNet [66] are able to further improve the accuracy

of correspondence pruning. Although the above-mentioned works
have exhibited outstanding performance, they still suffer from
some limitations. First, it is not intuitive to implicitly capture
context by designing data-independent operators on correspon-
dence learning. Second, outliers will severely hinder network
learning and convergence. Most of them are still susceptible to the
negative impact of high ratio outliers during the network training
though attention mechanism aims to alleviate this problem. Unlike
these methods, we adequately leverage different types of neighbor
consistency to explicitly incorporate the intrinsic geometric and
feature property of correspondences into the network learning
process. We also utilize the iterative pruning strategy [27] as
the basic framework to extract more reliable candidates for better
network learning.

2.3 Consistency of Correspondences
Under the 2D rigid transformation, inliers usually have consistent
constraints while the distribution of outliers is random [14].
Therefore, consistency of correspondences is an important clue to
separate inliers and outliers, which has been studied extensively
in the past [67], [45], [68]. For example, BF [15] formulates
the piecewise consistency constraint via the proposed bilateral
functions for global modeling. CODE [30] designs a consistent
separability constraint at a global level to filter highly noisy
correspondences. GMS [17] seeks consistent spatial neighbors to
determine the reliability of correspondences by a grid-based score
estimator. LPM [69] also explores neighbor consistency using
predefined statistical measures. These handcrafted methods need
elaborate parameter tuning to achieve satisfactory performance,
meanwhile, they are sensitive to challenging matching scenes such
as large viewpoint changes [45], [46].

Inspired by these traditional technologies, some works explore
the consistency of correspondences in a learnable manner. NM-
Net [29] develops a hierarchical network to mine the context of
compatibility-specific neighbors based on local affine informa-
tion [70]. LMCNet [16] reformulates motion coherence of spatial
neighbors into a smooth function solved by graph Laplacian.
CLNet [27] searches for neighbors in the feature space, and
designs a local-to-global consensus learning framework. MS2DG-
Net [28] also exploits the local topology of feature-space neigh-
bors by semantics dynamic graph. They aggregate neighbor in-
formation by various network structures or learning paradigms for
robust correspondence pruning. However, as analyzed in Section 1,
the neighbors searched from above-mentioned spaces may be
inconsistent because of the irregular distribution of numerous
outliers. In this paper, we propose a global-graph space to ex-
plicitly capture the strong consistency of inliers at a global level
so that correspondences with similar global graph structures can
be neighbors. Meanwhile, to enhance the robustness of method
for complex matching scenes, we empirically devise a neighbor
consistency block. It progressively extracts and integrates three
types of neighbor contexts through the proposed SCE layer and
CCI layer.

3 METHODOLOGY

This section, we will describe the details of our method. The
problem formulation of two-view correspondence pruning is first
described. The details of NCMNet, including global-graph space,
neighbor consistency block, and network architecture, are then
introduced. Finally, we give the description of loss function.
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Fig. 2. Framework of our NCMNet. N×4 initial correspondences are established as inputs, then, the parametric model and N×1 inlier probabilities
are estimated. The iterative pruning strategy containing two pruning modules is adopted as the core architecture to distill more reliable candidates for
model estimation. Each pruning module includes several existing network structures and the proposed Neighbor Consistency (NC) block. NC block
mainly consists of three key parts: the construction of three neighbor embeddings (GS ,GF ,GG), Self-Context Extraction (SCE) layer to capture
and aggregate intra-neighbor context (CS , CF , CG), and Cross-Context Interaction (CCI) layer to fuse and modulate inter-neighbor information
(IS , IF , IG). CS: the coordinate space, FS: the feature space, GS: the global-graph space.

3.1 Problem Formulation

Given a pair of matching images, we can utilize handcrafted fea-
ture extraction methods [7], [9] or learned ones [10], [11] to obtain
feature keypoints and associated descriptors. The primary corre-
spondence set S = {s1, s2, ..., sN} ∈ RN×4 can be estimated
by the similarity matching strategy of descriptors or neural net-
works [71]. Here, si = (ui, vi) denotes the i-th correspondence,
where ui and vi are normalized keypoint coordinates using camera
intrinsics in two matching images, respectively. N denotes the
number of initial correspondences. However, the outliers caused
by the ambiguity of feature descriptors are inevitable. Thus, the
purpose of our correspondence pruning is to filter out outliers
from initial correspondences.

To achieve this purpose, the correspondence pruning process
usually takes the initial correspondence set S as input, and
outputs the label (i.e., outlier or inlier) of all correspondences.
That is, the set S is split into an inlier set Sin and an outlier set
Sout. Meanwhile, the parametric models (e.g., essential matrix)
are estimated by using the Sin to evaluate the performance of
methods. The parametric model is utilized to recover the camera
poses of matching images, including corresponding rotation and
translation vectors. In summary, the optimization objective of a
correspondence pruning method is seeking sufficient inliers to
recover accurate camera poses.

More specifically, we take the proposed NCMNet illustrated
in Fig. 2 as an example. An iterative pruning strategy [27] has
been chosen as the core architecture to alleviate the negative
impact of outliers during network learning. fθ1(S) = (S1, o1)
and fθ2(S1) = (S2, o2) represent two sequential pruning mod-
ules with relevant parameters θ1 and θ2. S1 ∈ RN1×4 and
S2 ∈ RN2×4, where N > N1 > N2, are two pruned correspon-
dence sets. They are expected to be more reliable compared to S,
determined by the learned logit values o1 and o2, for parametric
model estimation. Next, o2 is processed by an additional ResNet
block [18] and an MLP layer for computing the inlier weight set
w2 as:

w2 = tanh(ReLU(o2)) ∈ [0, 1), (1)

where tanh(·) and ReLU(·) denote activation functions. We then

utilize S2 and w2 to estimate an essential matrix Ê ∈ R3×3 using
the weighted eight-point algorithm [18], [27]. Finally, a label set
l ∈ RN×1 of all correspondences can be obtained by the full-size
verification operation. The architecture is denoted as follows:

Ê = g(S2, w2), (2)

l = v(Ê, S), (3)

where g(·) refers to the weighted eight-point algorithm [18],
which offers greater robustness compared to the traditional eight-
point algorithm [14] due to the consideration of inlier weights.
Noteworthily, in weighted eight-point algorithm, the adopted self-
adjoint eigendecomposition operation is differentiable with respect
to the inlier weights, which facilitates the end-to-end regression
of the essential matrix. v(·) is the full-size verification operation
based on the epipolar constraint [14] to avoid that some inliers
are removed incorrectly. Note a correspondence with the epipolar
distance calculated by Ê less than the threshold of 10−4 is deemed
to be an inlier:

Sin =
{
si | li < 10−4

}
, (4)

where Sin is the retained inlier set. Similarly, outlier can be
defined as:

Sout =
{
si | li > 10−4

}
, (5)

where Sout is the outlier set. This is the same as the determination
of ground-truth correspondence labels.

3.2 Enhanced Global-Graph Space

Neighbor consistency is an effective clue for discriminating corre-
spondences, which leverages the fact that the neighbors of inliers
are compatible with each other while outliers scatter randomly.
Therefore, it is important to seek reliable consistent neighbors
for each inliers. In this paper, we adopt a differentiable manner
to leverage the potential of three types of neighbors for dealing
with complex matching situations. Three different neighbor search
spaces, including the coordinate space S ∈ RN×4, the feature
space F ∈ RN×d, and our global-graph space, are adopted to
seek different types of neighbors. d is the number of channels. S
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denotes the network input, and F represents the middle feature
map learned from several ResNet blocks. We can obtain spatial
k-nearest neighbors of each correspondence by performing knn
search on the S. Similarly, feature-space k-nearest neighbors are
acquired on the F . The spatial and feature-space neighbors focus
on the correspondences with similar low-dimensional coordinates
and high-dimensional features. Our global-graph space aims at
finding globally consistent neighbors with similar graph structures
through modified Graph Convolution Network [35], [27]. Com-
pared to [36], we introduce spatial consistency of correspondences
to complement original feature consistency on the global graph
construction, called enhanced global-graph space.

To be specific, we firstly construct a weighted global graph
Gg = {Vg, Eg}, where nodes Vg denote all correspondences, and
undirected edges Eg connect every two correspondences using the
enhanced compatibility score scij as:

scij = sfij ⊙ ssij , 1 ≤ i, j ≤ N. (6)

It indicates the affinity relationship of correspondence si and sj
based on the feature and spatial consistency scores. As in [36], we
estimate the initial inlier weights wp based on the F:

wp = ReLU(tanh(MLP(F ))), (7)

in which MLP(·) denotes an MLP layer to reduce the channel
dimension to 1. Then, the feature consistency score between the
two correspondences is calculated as:

sfij = wp
i · w

p
j , (8)

which measures the degree of feature similarity among correspon-
dences. Moreover, we additionally utilize the spatial consistency
score between correspondence pairs to complement the feature
consistency score as follows:

ssij = max(0, 1−
d2ij
ϵ2d

), (9)

where max(0, ·) operation is used for avoiding a negative value.
dij =

∣∣||ui − uj || − ||vi − vj ||
∣∣ is the spatial difference of

two correspondences, i.e., si = (ui, vi) and sj = (uj , vj),
according to the length constraint. ϵd denotes a distance hyper-
parameter for controlling the sensitivity of length constraint. Two
correspondence si and sj with the dij greater than ϵd are deemed
spatially incompatible, and are received zero for ssij . Conversely,
they are spatially compatible when ssij gives a large value, which
can be used as a dependable regulator for the feature consistency
score. Hence, we can formulate a weighted adjacency matrix
A = scij ∈ RN×N of weighted global graph Gg , which describes
the long-range dependence among correspondences. A strong
association is formed only when two correspondences have high
feature and spatial consistency scores simultaneously, otherwise,
the link will be weak or nonexistent. Finally, the spectral graph
convolution operation [35] has been utilized for further learning
this association:

L = D̃− 1
2 ÃD̃− 1

2 , (10)

F g = σ(LFW g), (11)

in which Ã = A + IN denotes the adjacency matrix with
added self-connections of the diagonal identity matrix IN . D̃ii =∑

j Ãij is the diagonal degree matrix of Ã. The graph Laplacian
matrix L adjusts the F into the spectral domain. W g represents
the learned weight. σ(·) is the ReLU(·) activation function.
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Fig. 3. (a) The proposed grouped convolution manner in our SCE layer.
It divides the neighbor nodes of into g groups according to their affinities
to the anchor. Two consecutive convolution layers (Conv1 and Conv2)
are used to dynamically extract the intra-neighbor context. (b) The struc-
ture of the CCI layer. GCA: grouped cross-attention. It contains three
parallel GCA branches to integrate inter-neighbor information. Values
(V), queries (Q), and keys (K) learned from different neighbor context
features are used for cross-attention operation.

F g ∈ RN×d is the enhanced global-graph space, which can
effectively reflect the global consistency of correspondences from
two different aspects, particularly for inliers. This could pull the
nearest-neighbor distance of correspondences with similar graph
structures, enabling them to become neighbors, in our enhanced
global-graph space. We then perform knn search on the F g to
obtain global-graph k-nearest neighbors for each correspondence.
The neighbor search region of global-graph neighbors is large (see
the ablation) owing to the global operation.

3.3 Neighbor Consistency Block

Three neighbor search spaces focus on distinct types of neighbors.
Thus, to enhance the robustness of method for challenging match-
ing situations, we present a neighbor consistency (NC) block to
mine the consistency of three neighbors progressively. As the core
structure of NCMNet, our NC block consists of three crucial parts:
neighbor embedding construction, self-context extraction (SCE)
layer, and cross-context interaction (CCI) layer.

Neighbor embedding construction. When the three types
of neighbors are searched, we first need to consider how to
build corresponding neighbor embeddings for network learning.
Graph structure is well suited for representing and modeling
complex relationships between elements, making it an invaluable
tool in a variety of fields [72], [73], [74], [75]. Therefore, in
this component, three individual directed graphs of each corre-
spondence si are built according to its different neighbors, i.e.,
GS
i =

{
VS
i , ES

i

}
, GF

i =
{
VF
i , EF

i

}
, GG

i =
{
VG
i , EG

i

}
. Take the

GS
i as an example, nodes VS

i =
{
sSi1, ..., s

S
ik

}
represent the spatial

k-nearest neighbors of si, and directed edges ES
i =

{
eSi1, ..., e

S
ik

}
link si and its spatial neighbors in VS

i . Following [76], [27], the
edge is constructed as:

eSij = [fi, fi − fS
ij ], j = 1, 2, ..., k. (12)

fi, f
S
ij denote feature maps of si and its j-th spatial neighbor sSij

in the F = {f1, f2, ..., fN}. fi−fS
ij is their residual. [·, ·] denotes

the feature concatenation operation on the channel dimension.
Therefore, we can obtain the spatial neighbor embedding of all
correspondences GS ∈ RN×k×2d. The feature-space neighbor
embedding GF ∈ RN×k×2d and the global-graph neighbor
embedding GG ∈ RN×k×2d can also be obtained using the same
way.

SCE layer. After constructing the three neighbor embeddings,
the next stage involves effectively mining the intra-neighbor
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Fig. 4. The proposed grouped cross-attention (GCA) branch. The size of
groups is set to 2 for ease of display. Three neighbor context features are
used for generating values (V), queries (Q), and keys (K), respectively.
Then, they are evenly divided into q feature groups. Besides the cross-
attention operation, each feature group also receives the output of the
previous group to increase the diversity and communication.

contextual information. An uncomplicated approach is to utilize
well-known pooling operations, such as max-pooling and average-
pooling. Nevertheless, these indiscriminate manners have the
drawback of discarding the affinity relationships among graph
nodes. Therefore, in order to fully leverage the graph structure of
our neighbor embeddings, an SCE layer is proposed for neighbor
information aggregation. Taking into account that nodes in the
graph are ordered according to the similarity principle, our SCE
layer employs a grouped convolution manner [27] to dynamically
acquire neighbor relationships and gather neighbor context along
the graph’s edges.

More specifically, as shown in Fig. 3(a), given a neighbor
embedding Gi ∈ Rk×2d of si, the nodes are partitioned into
g subsets according to their affinities to the anchor, with each
group containing k/g nodes. The embedding is processed using
two consecutive convolution layers, which are followed by a
Batch Normalization (BN) [77] and the ReLU. This process is
represented as follows:

Ci = (Conv2(Conv1(Gi)). (13)

Conv1(·) and Conv2(·) denote the convolution layers with
learned 1 × k

g kernels and 1 × g kernels, respectively. For
simplicity, the BN and ReLU are omitted. Ci ∈ R1×d denotes
the output of Gi. In each NC block, three parallel SCE layers
are employed to independently process each neighbor embedding,
resulting in three corresponding neighbor context features denoted
as

{
CS , CF , CG

}
∈ RN×d.

CCI layer. Once the three neighbor context features are
acquired, our objective is to collaboratively fuse and modulate
inter-neighbor information. In [36], our CCI layer uses a cross-
attention operation, which has limited capability in exploring inter-
neighbor information due to the single sequential manner [62],
[78], [66]. On top of that, we enrich the information integration
of three features in a grouped manner. As illustrated in Fig. 3(b),
the CCI layer consists of three parallel grouped cross-attention
(GCA) branches. In each branch, values V are learned from one

neighbor context feature, while queries Q and keys K are derived
from the other two features. The overview of GCA branch is
depicted in Fig. 4. We first feed three neighbor context features
into an individual MLP layer followed by BN and ReLU to
generate three new features {Q,K,V} ∈ RN×d. Then, along
the channel dimension, we evenly divide them into q groups,
represented by {Qi,Ki,Vi} ∈ RN× d

q , i ∈ {1, 2, ..., q}. For the
i-th group, the matrix multiplication between Qi the transpose of
Ki is performed, then, a softmax function is used to compute the
attention weight matrix:

Aw
i = softmax(QiKi

T ), (14)

where Aw
i ∈ RN×N measures the correlation between correspon-

dence pairs. Next, a matrix multiplication between Vi and Aw
i is

performed to enhance the Vi. Meanwhile, to boost the variety and
communication between feature groups, we adopt a hierarchical
multiplication operation to connect all groups. Specifically, except
for the first group, other groups can utilize the output information
from the preceding group. The output of each group is defined as:

Yi =

{
ViA

w
i , i = 1;

σ1(Yi−1)⊙ViA
w
i , 1 < i ≤ q,

(15)

where σ1(·) is the sigmoid activation function. In this compo-
nent, we employ the grouping manner to explore rich contexts
from various perspectives, and the hierarchical multiplication to
enhance the interaction among feature groups. These operations
are beneficial for network learning owing to the combinatorial
explosion effect [78], [66]. Finally, all outputs of feature groups
are concatenated along the channel dimension:

Y = concat(Y1, Y2, ..., Yi), (16)

where Y is the final output of all groups. Here, we give the
example of the first GCA branch:

IS = α(MLPs(Y )) + CS , (17)

where MLPs(·) consists of one MLP layer with BN and ReLU.
Learned scale parameter α is initialized as 0. IS represents the
output of the first GCA branch, in which each position’s response
is a weighted combination between the other two neighbor features
across all positions and the original features. Hence, the inliers
can obtain mutual benefits within three neighbor context fea-
tures by selectively aggregating contexts, which further improves
the discrimination between inliers and outliers. Likewise, we
can generate the results IF and IG by the second and third
GCA branches, respectively. Three neighbor interaction features{
IS , IF , IG

}
∈ RN×d constitute the ultimate outputs of the

proposed NC block.

3.4 Network Architecture
With our NC block, a correspondence pruning network, called
Neighbor Consistency Mining Network, is built. The specific
architecture of NCMNet is illustrated in Fig. 2. It takes initial
correspondences as inputs, and adopts two sequential pruning
modules to progressively extract dependable candidates, which
are essential for the precise prediction of parametric models and
correspondence labels. Therefore, to improve the reliability of
candidates, the pruning module needs to have enough capability to
capture rich contexts. Each pruning module includes some off-the-
shelf network structures [18], [37], [27] and our NC block for cor-
respondence processing. As a basic structure, ResNet block [18]
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contains two MLP layers and several normalization techniques
for correspondence learning. Order-Aware block [37] is crafted
to capture both local and global contexts implicitly via an order-
aware clustering operation. Global Consensus block [27] encodes
global contextual information of features to estimate global scores
for pruning correspondences. It’s important to highlight that the
feature space and our global-graph space are learned. Hence, we
introduce a progressive refinement processing (employing two
NC blocks within each pruning module) to enhance neighbor
reliability and capture comprehensive neighbor context. Further,
we use NCMNet+ to denote the NCMNet [36] using the two new
improvements, i.e., enhanced global-graph space and GCA branch
in CCI layer.

3.5 Loss Function

Following [37], [27], the neural network is optimized by a classi-
fication loss and a regression loss:

L = Lc(om, ym) + βLe(E, Ê), (18)

in which β represents a weight for balancing the two terms.
The classification loss Lc(·) is a binary classification loss

defined as following:

Lc(om, ym) =
M∑

m=1

H(τm ⊙ om, ym), (19)

where M denotes the number of pruning modules. om is the
relevant logit value of the m-th pruning module. ym represents the
weakly supervised ground-truth label of correspondence obtained
by the epipolar distance depi with a default threshold of 10−4. ⊙
is the Hadamard product. H(·) represents the binary cross entropy
function. Inliers with the epipolar distance close to depi may suffer
from label ambiguity. Here, we use an adaptive temperature vector
τm [27] to mitigate this problem:

τi = exp(−
||di − depi||1

depi
), (20)

where di is the epipolar distance of correspondence si. For an
outlier with di > depi, the τi is set to 1. Thus, the inliers with a
smaller epipolar distance have stronger influence for the network
model optimization.

For regression loss Le(·), we adopt a geometry loss [57]
defined as following:

Le(E, Ê) =
(p

′T Êp)2

∥Ep∥2[1] + ∥Ep∥2[2] + ∥ET p′∥2[1] + ∥ET p′∥2[2]
.

(21)
Virtual correspondences (p, p′) formed from the ground truth
essential matrix E are used for evaluating estimated Ê. c[i]
represents the i-th item of vector c.

4 EXPERIMENTS

In the following, we compare NCMNet/NCMNet+ with state-of-
the-art correspondence pruning works. Experiments are conducted
on different benchmarks to showcase the effectiveness and gener-
alization ability of our proposed networks. The implementation
details, comparative results, as well as ablation studies are pre-
sented.

4.1 Implementation Details
As shown in Fig. 2, our network takes initial correspondences gen-
erated by different feature extraction methods, including SIFT [7],
ORB [9], and SuperPoint [11], as inputs. We select SIFT [7] with
the nearest neighbor descriptor matching as the default technology
unless otherwise specified. The number of correspondences N
is about 2000, and the channel dimension d is 128 in our ex-
periments. NCMNet utilizes the iterative pruning strategy [27] as
the core structure consisting of two consecutive pruning modules
with a pruning rate of 0.5. For NC block, we empirically set
the neighbor number k to 9 and 6 for two pruning modules.
Thus, We set the number of groups g in the SCE layer of two
pruning modules to 3 and 2, respectively. The distance hyper-
parameter ϵd in Eq. 9 is equal to 0.2. We choose the group
size to be q = 4 in the GCA branch as [66]. The number
of clusters in Order-Aware block is set as 250. The code is
provided in https://github.com/xinliu29/NCMNet to ensure the
reproducibility of our results.

Training details. We follow previous benchmark [37] to train
network models implemented by Pytorch on the given datasets.
Adam [79] optimizer configured with a batchsize of 32 and a
learning rate of 10−3 has been adopted for the optimization. The
training of network is conducted for 500k iterations Initially, the
balance parameter β in Eq. 18 is set to 0, and then fixed at 0.5
following the first 20k iterations.

4.2 Comparative Results
We compare the proposed network against several state-of-the-
art correspondence pruning works, including both conventional
methods and learning-based ones. For all traditional works, we
first adopt the ratio test [7] with a fixed threshold of 0.8 to remove
a great number of poor initial correspondences, as they cannot
deal with the case of high ratio outliers well. For all learning-
based works, we utilize whole initial correspondences as inputs.
We will evaluate the performance and generalization ability of
methods via different tasks.

4.2.1 Geometry Estimation
We can recover the two-view geometry, including rotation and
translation, by estimating essential matrix using weighted eight-
point algorithm or RANSAC. The quality of geometry estima-
tion heavily influences downstream feature matching applications.
Thus, it is the main criterion for evaluating the performance of
correspondence pruning algorithms.

Datasets. Following [37], we utilize Yahoo’s YFCC100M [80]
as the outdoor scene and SUN3D [81] dataset as the indoor scene
to train and test network models. YFCC100M consists of 100
million tourist images collected from the Internet, which is split
into 71 image sequences according to different landmarks, where 4
sequences are chosen for network testing. SUN3D contains a large
number of image frames sampled from various RGBD videos,
which is split into 254 sequences, of which 15 image sequences
are for testing. The training sequences are segmented into three
disjoint parts, including the training set (60%), validation set
(20%), and known testing set (20%). It is important to highlight
that the indoor scene is particularly difficult as it often involves
numerous texture-less regions and repetitive structures.

Evaluation. The camera poses of image pairs are encoded us-
ing rotation and translation vectors calculated from the estimated
essential matrix. The angular differences between ground truth

https://github.com/xinliu29/NCMNet
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Original image pair OANet++ CLNet NCMNet NCMNet+

Fig. 5. Visualization results of correspondence pruning. From left to right columns: the matching images, OANet++ [37], CLNet [27], NCMNet [36],
and NCMNet+. The top three examples are selected from unknown YFCC100M [80] and the rest examples are come from unknown SUN3D [81].
These image pairs involve large illumination changes, viewpoint variations, occultations, repetitive structures, textureless objects, etc. Inliers (green
and outliers (red lines) lines) retained by the network models are exhibited.

TABLE 1
Quantitative comparison results on YFCC100M [80] and SUN3D [81].
mAP5◦ (%) on known and unknown scenes is given. Red and blue

indicate the best and the second-best, respectively.

Methods
YFCC100M SUN3D

Known Unknown Known Unknown

RANSAC [20] 30.19 40.83 19.13 14.57
DEGENSAC [82] 21.00 27.65 16.01 11.01
GC-RANSAC [83] 30.43 41.58 18.86 14.14
MAGSAC [48] 32.80 41.61 20.35 16.24
MAGSAC++ [84] 30.48 40.95 18.90 14.19
AdaLAM [26] 32.37 45.40 21.02 15.94
LFGC [18] 16.87 25.95 11.55 09.30
DFE [57] 18.02 30.29 14.44 12.34
OANet++ [37] 33.96 38.95 20.86 16.18
ACNe [63] 29.17 33.06 18.86 14.12
LMCNet [16] 33.73 47.50 19.92 16.82
T-Net [60] 41.33 48.20 22.38 17.24
MS2DG-Net [28] 39.68 48.20 22.20 17.84
MSA-Net [65] 39.53 50.65 18.64 16.86
CLNet [27] 39.16 53.10 20.35 17.03
PGFNet [66] 42.06 53.70 23.66 19.32
NCMNet [36] 52.33 63.43 26.12 20.66
NCMNet+ 52.40 65.83 25.99 21.18

vectors and estimated ones are selected as the error metrics. The
mean Average Precision (mAP) with different thresholds is com-
puted as the evaluation metric of two-view geometry estimation,
where mAP under 5◦ (i.e., mAP5◦) is the default metric.

Results. In Table 1, the quantitative comparison results for es-
sential matrix estimation on YFCC100M and SUN3D datasets are

NC
M
Ne
t+

GT

Fig. 6. Failure cases of our proposed NCMNet+ on YFCC100M [80] and
SUN3D [81]. We also show the ground-truth inliers.

reported. We see that using the ratio test can significantly enhance
the RANSAC performance since most of the outliers in initial
correspondences have been removed beforehand. This proves that
RANSAC-related methods are difficult to cope with in the case of
high outliers. Traditional methods equipped with the ratio test can
deliver competitive results compared with some learned methods.
Obviously, our methods are superior to all traditional and learning-
based baselines by a significant margin in every testing scene. For
example, compared to the second-best PGFNet [66], NCMNet
obtains 10.27% and 9.73% mAP5◦ substantial improvements
for both known and unknown outdoor scenes, respectively. The
proposed NCMNet+ can further boost performance by using the
enhanced global-graph space and modified inter-neighbor interac-
tion. Fig. 5 displays the visual comparison results of our methods
compared to the two other baselines [37], [27] on correspondence



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 2
Performance comparisons when using SIFT [7] and SuperPoint [11] on

unknown YFCC100M [80]. mAP5◦ without/with RANSAC [20] as a
post-processing step is reported.

Methods
SIFT [7] SuperPoint [11]

- RANSAC - RANSAC

RANSAC [20] - 40.83 - 34.38
LFGC [18] 25.95 50.00 24.25 42.57
OANet++ [37] 38.95 52.59 35.27 45.45
MS2DG-Net [28] 48.20 57.15 37.38 46.48
CLNet [27] 53.10 59.13 39.19 48.15
PGFNet [66] 53.70 57.83 42.03 47.30
ANA-Net [64] 31.55 59.10 - -
NCMNet [36] 63.43 63.33 48.20 52.20
NCMNet+ 65.83 64.15 49.80 53.35

TABLE 3
Comparison results on unknown YFCC100M [80]. The initial

correspondences are estimated by learning-based matchers, i.e.,
SuperGlue [71] and LightGlue [13]. mAP5◦ and mAP10◦ are reported.

Methods
SuperGlue [71] LightGlue [13]

mAP5◦ mAP10◦ mAP5◦ mAP10◦

RANSAC [20] 59.90 71.14 63.23 74.04
LFGC [18] 58.88 70.79 62.05 73.10
OANet++ [37] 60.93 71.98 63.50 74.15
MS2DG-Net [28] 59.95 71.30 62.63 73.25
CLNet [27] 63.10 74.00 68.65 78.18
PGFNet [66] 60.73 71.90 62.33 73.65
NCMNet [36] 66.33 76.33 70.38 79.24
NCMNet+ 68.25 77.30 71.70 79.69

pruning. For challenging outdoor and indoor matching scenes,
such as large illumination changes, viewpoint variations, occulta-
tions, repetitive structures, and textureless objects, the proposed
methods obtain reliable pruning results. Besides, some failure
cases are illustrated in Fig. 6, in which outliers are dominated.
We can find that in these cases, the ground truth inliers are
quite sparse compared to the initial correspondences (2000) due
to limited overlapping regions, blurs, and low light conditions.
This makes correspondence pruning more difficult. According
to Table 3 and Table 4, a stronger correspondence estimator is
potential to alleviate this issue. Another hidden observation is that
these weakly supervised ground-truth labels may be unreliable
in these cases, which will disturb the learning and optimization
process of our method. We suggest that improving the robustness
of the model to such noisy labels is quite valuable and meaningful
in future research.

Furthermore, a robust model estimator RANSAC [20] has
been utilized as a post-processing technique for learning-based
methods to estimate the essential matrix. It takes the retained
correspondences of networks as inputs, and adopts the inlier
threshold of 0.001 as [37]. We also consider using the learned
feature extraction method to detect pixel-level keypoints and
construct corresponding descriptors. SuperPoint [11] proposes a
self-supervised framework for keypoint detection and description,
and receives widespread attention in multiple-view geometry prob-
lems. Here, we adopt SuperPoint with nearest neighbor matching

TABLE 4
Generalization ability of networks for different dense matchers on

unknown YFCC100M [80], including LoFTR [41] and DKM [85]. mAP5◦

and mAP10◦ are reported.

Methods
LoFTR [41] DKM [85]

mAP5◦ mAP10◦ mAP5◦ mAP10◦

RANSAC [20] 68.58 77.58 74.85 82.13
LFGC [18] 64.93 74.64 73.45 81.43
OANet++ [37] 64.85 74.68 73.75 81.28
MS2DG-Net [28] 66.90 76.09 73.15 80.76
CLNet [27] 69.78 78.35 75.28 82.30
PGFNet [66] 63.53 73.31 73.83 81.48
NCMNet [36] 70.25 78.55 75.55 82.51
NCMNet+ 70.75 79.00 75.80 82.53

strategy to construct initial correspondences of two images. The
quantitative results on unknown YFCC100M dataset are reported
in Table 2. For ANA-Net [64], we utilize the publicly available
network model directly due to the unavailability of the train-
ing process. Again, our NCMNet and NCMNet+ outperform all
baselines in all cases. The accuracy of camera poses can be
further improved by applying RANSAC as a post-processing
step, especially for those methods that show poor performance
(e.g., LFGC and OANet++) when using the weighted eight-point
algorithm. All learned methods with RANSAC post-processing
surpass the vanilla RANSAC, which demonstrates that learning-
based correspondence pruning is more effective than simple ratio
test. However, we find that the performance of NCMNet and
NCMNet+ with RANSAC decreases when SIFT is used. It is
difficult for RANSAC to further distill suitable inliers from the
retained correspondences of networks, while the weighted eight-
point algorithm can fully utilize the inliers and their weights.
Meanwhile, we find that the methods using SuperPoint perform
worse than the ones using SIFT. This is attributed to the learned
feature extraction method having limited generalization ability,
so the quality of estimated initial correspondences solely using
nearest neighbor search is difficult to guarantee.

Learning-based Matchers. Recently, SuperGlue [71] takes
keypoints produced by feature methods as inputs, and leverages
graph neural networks to improve keypoint discrimination and
learn optimal assignments. It can be viewed as a replacement
for nearest neighbor matching of descriptors. Here, we first use
SuperPoint [11] as the keypoint detector. Then, more advanced
SuperGlue and LightGlue [13], which is an effective and efficient
replacement of SuperGlue, as the keypoints matchers are selected
to estimate initial correspondences, where network models are
provided by the authors. Finally, we adopt learned correspondence
pruning methods retrained on the datasets generated by SuperGlue
with RANSAC to estimate the essential matrix. Moreover, we find
the epipolar distance threshold in the full-size verification step
has a significant impact on the performance, so we set it to 1e-
7 in this experiment. In Table 3, we give the comparison results
on unknown YFCC100M dataset. We can see that RANSAC can
achieve significant performance gains. This is because learning-
based SuperGlue and LightGlue can generate more accurate initial
correspondences by improving the representation ability of key-
points. For example, the mAP5◦ is raised from 34.38% as reported
in Table 2 to 59.90% when using SuperGlue. As a result, many
learning-based pruning methods are difficult to further increase
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TABLE 5
Generalization ability of networks on the outdoor PhotoTourism and

Pragueparks [46] datasets, and the indoor ScanNet [86] dataset.
mAP5◦ without/with RANSAC post-processing is reported.

Methods PhotoTourism Pragueparks ScanNet

LFGC [18] 13.62/43.13 02.42/49.51 02.07/11.93
OANet++ [37] 30.35/48.39 07.37/49.17 04.73/14.27
MS2DG-Net [28] 36.79/52.52 09.68/57.54 04.93/15.33
CLNet [27] 38.43/51.49 17.27/59.52 06.53/15.93
PGFNet [66] 41.22/52.34 09.90/56.00 04.87/14.93
NCMNet [36] 52.62/56.54 24.09/63.15 09.00/16.87
NCMNet+ 52.93/56.84 27.17/63.48 10.13/17.47

TABLE 6
Results of fundamental matrix estimation on unknown YFCC100M [80].

mAP with different error thresholds is reported.

Methods mAP5◦ mAP10◦ mAP15◦ mAP20◦

LFGC [18] 19.90 30.96 39.11 45.68
OANet++ [37] 30.95 42.63 50.79 56.82
MS2DG-Net [28] 36.63 48.56 56.68 62.76
CLNet [27] 47.98 57.51 63.88 68.50
PGFNet [66] 40.20 51.13 58.35 63.54
NCMNet [36] 53.03 62.89 68.83 73.18
NCMNet+ 54.60 63.79 69.53 73.70

the accuracy of recovered camera poses. In comparison, our
NCMNet and NCMNet+ are able to obtain decent performance
gains in both cases since our pruning methods can provide more
suitable inliers for geometry estimation. This further demonstrates
the compatibility of our methods with more advanced keypoint
matchers [71], [13].

Generalizability. In this section, we adopt different matchers
and datasets to evaluate the generalization ability of network mod-
els. Lately, some dense matchers [41], [87], [88], [85] take pairs of
images as inputs to establish pixel-wise dense matches without the
need for keypoints. Here, we construct the initial correspondences
with state-of-the-art matchers, including semi-dense LoFTR [41]
and dense DKM [85], where models are publicly available. The
quantitative results on unknown YFCC100M dataset are reported
in Table 4. We utilize the pruning network models trained on
SuperGlue and empirically set the epipolar distance threshold
to 1e-2. Compared to sparse matchers, these dense approaches
can achieve better performance since they are not limited to
keypoint detectors. Our methods still bring decent improvements,
indicating the usability and potential of correspondence pruning
as a complementary module.

Meanwhile, we also analyze the generalizability of network
models on different datasets, including the outdoor PhotoTourism
and Pragueparks [46] datasets, and the indoor ScanNet [86]
dataset. PhotoTourism is a photo-tourism data containing 9 scenes
for testing, Pragueparks is a small-scale video sequence including
3 scenes for testing, which come from the Image Matching
Challenge [46]. ScanNet is a large RGB-D video dataset, in which
1500 test pairs are provided by [71]. We adopt SIFT [7] with
nearest neighbor matching to establish correspondences. Network
models are trained on the outdoor YFCC100M or indoor SUN3D
datasets using SIFT feature. As shown in Table 5, NCMNet
and NCMNet+ exhibit better generalization ability in different

TABLE 7
Results of homography matrix estimation on HEB [89]. The mean

Average Accuracy of the Re-Projection Error (RPE), the Angular Pose
Error (APE), the Rotation Error (RE), and the Absolute Translation Error

(ATE) are reported.

Method RPE APE RE ATE

RANSAC [20] 27.89 2.71 19.25 27.34
LFGC [18] 39.02 3.74 25.47 31.06
OANet++ [37] 39.65 3.98 26.41 31.55
MS2DG-Net [28] 39.22 2.96 26.01 30.59
CLNet [27] 40.08 3.98 26.44 31.56
PGFNet [66] 38.34 3.84 25.53 31.00
NCMNet [36] 42.14 4.35 27.38 32.17
NCMNet+ 43.86 4.51 28.32 32.64

matching situations than other works, further demonstrating the
robustness of our methods.

Fundamental Matrix Estimation. In the preceding experi-
ments, we estimate essential matrix to obtain relative poses, which
assumes that camera intrinsics are known. Estimating fundamental
matrix is a more widespread way in the structure from motion
(SfM) pipelines [2]. The main difference between them is that
the latter employs raw image coordinates as inputs instead of
normalized coordinates. Therefore, we retrain network models
to estimate fundamental matrix employing weighted eight-point
algorithm on the YFCC100M dataset, and use the same evaluation
metrics as essential matrix estimation. As reported in Table 6,
NCMNet and NCMNet+ continue to show substantial superiority
over other state-of-the-art works in terms of mAP across various
error thresholds. Moreover, we can observe that our methods can
achieve comparable or superior camera pose estimation results
recovered from fundamental matrix compared to other competitors
using essential matrix.

4.2.2 Homography Estimation

The homography, which can characterize the transformation be-
tween two planes or viewpoints, plays a pivotal role in computer
vision applications [14]. Finding reliable homographies of image
pairs also requires accurate feature correspondences. In this ex-
periment, we evaluate the correspondence pruning methods for
homography estimation.

Dataset. HEB [89] is a large-scale homography dataset, which
contains 226,260 homographies between image pairs sampled
from the Pi3D dataset [89]. The testing set consists of nine scenes
with significant changes for the viewpoint and illumination, thus
making the low inlier ratio. Considering that the training data
is not enough, we follow the evaluation strategy in [89], where
network models pre-trained on the YFCC100M dataset are used
for evaluation.

Evaluation. Following benchmark [89], we present the mean
Average Accuracy of the Re-Projection Error (RPE), the Angular
Pose Error (APE), the Rotation Error (RE), and the Absolute
Translation Error (ATE) to assess how models perform in filtering
out outliers for homography matrix estimation. The mAA of four
kinds of error is calculated with the following thresholds: from 1
to 10 degrees for APE and RE, from 0.1 to 5 meters for ATE, and
from 1 to 20 pixels for RPE.

Results. The quantitative comparison results of correspon-
dence pruning methods for homography estimation are tabulated
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TABLE 8
Ablation studies regarding performance gains of the key components in

each pruning module. IPS: the iterative pruning strategy. SCE: the
Self-Context Extraction layer. CCI: the Cross-Context Interaction layer.

PNR: the progressive neighbor refinement processing. OA: the
Order-Aware block. Bold indicates the best.

IPS SCE CCI PNR OA mAP5◦ mAP20◦

✓ 53.10 76.11
✓ ✓ 56.50 78.34
✓ ✓ ✓ 58.63 80.03
✓ ✓ ✓ ✓ 61.73 81.46
✓ ✓ ✓ ✓ ✓ 63.43 82.46
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Fig. 7. Illustration of mean neighbor search region ratio (%) for all inliers
in terms of different neighbor numbers of k. Global-graph space can find
neighbors at greater distances due to the consideration of long-range
dependencies.

in Table 7. The initial correspondences are provided by [89]. For
learning-based models, they are adopted for filtering out outliers
while RANSAC [20] estimator is used for the final homography
matrix estimation. It can be seen that our methods outperform all
traditional and learning-based methods in all cases. For example,
compared to the second-best CLNet, NCMNet obtains 2.06%,
0.37%, 0.94%, and 0.61% mAA improvements on four metrics,
respectively. Meanwhile, the experimental results indicate that our
NCMNet+ can further improve the performance.

4.3 Ablation Studies
In this section, we construct ablation studies to examine the
Performance of different components in the proposed NCMNet
on the unknown YFCC100M [80] dataset. We use both mAP5◦

and mAP20◦ as metrics to assess the methods.
Main components. In the proposed NCMNet, the iterative

pruning strategy [27] is adopted as the network framework. To
validate the effect of the main components in the pruning module,
we evaluate their performance gains compared to the baseline [27].
The SCE layer is utilized to extract the intra-neighbor context,
meanwhile the CCI layer aims at exploring the inter-neighbor
interaction. To boost the reliability of dynamic neighbors, we
use the progressive neighbor refinement processing. While the
Order-Aware block helps in implicitly obtaining local and global
contexts. The performance improvements of the main components
in each pruning module are tabulated in Table 8. It is evident that
the model performance gradually improves with the incremental
addition of SCE layer and CCI layer. Besides, from the results of
the 4-th and 5th rows, it can be demonstrated that adopting the

TABLE 9
The effectiveness of simultaneously using three types of neighbors.
SN: the spatial neighbors. FN: the feature-space neighbors. GN: the

global-graph neighbors.

Three SN Three FN Three GN SN+FN+GN

mAP5◦ 61.40 62.60 61.73 63.43
mAP20◦ 81.26 81.74 81.31 82.46

(a) (b)

Fig. 8. (a) Influence of different inlier ratios in initial correspondences.
The ratio test (rt) equipped with different thresholds is utilized to obtain
the input sets with different inlier ratios. We report mAP with different
error thresholds. (b) Parametric analysis of different numbers of neigh-
bors in neighbor embeddings. (·, ·) represents the neighbor amount k in
each neighbor embedding of the first and the second pruning modules,
respectively. mAP5◦ is reported.

progressive neighbor refinement processing and the Order-Aware
block is effective. Our NCMNet (IPS + SCE + CCI + PNR +OA)
can achieve the best performance, which verifies the effectiveness
and reasonability of each main component.

Three types of neighbors. In Fig. 1 (c), we give a visual
comparison about three types of neighbors. To further show the
search region of three neighbors, Fig. 7 presents quantitative
results on the mean neighbor search region for all inliers. It is
the average ratio between the area of the rectangle covered by
all neighbors and the whole image. Here, owing to the consid-
eration of long-range dependencies among correspondences, the
global-graph neighbors of inliers exhibit larger neighbor search
regions compared to the others for different numbers of k-nearest
neighbors. In addition, to demonstrate the complementary among
the three types of neighbors, we employ the same neighbor
embeddings within the NC block for evaluation. The comparative
results are tabulated in Table 9. It is evident that when the three
types of neighbors are all used, the network achieves the best
performance.

Neighbor context aggregation. To dynamically extract the
neighbor context for each neighbor embedding, our SCE layer
utilizes a grouped convolution method. Thus, we compare it with
some classic aggregation manners, including the average-pooling
layer, the max-pooling layer, and the convolution layer with 1 ×
k kernels, to prove the validity of this design. The comparative
results are reported in Table 10, where the grouped convolution
strategy surpasses other competitors, indicating its effectiveness.

Inlier ratio of inputs. The performance of traditional meth-
ods, e.g., RANSAC [20] and its variants [82], [83], [48], is highly
dependent on the inlier ratio (ir) in the initial correspondences.
Therefore, we analyze the influence of the inlier ratio for NCMNet
as illustrated in Fig. 8 (a). Using Lowe’s ratio test (rt) [7] with
different thresholds during descriptor matching, we construct ini-
tial correspondences with varying inlier ratios as network inputs,
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TABLE 10
Quantitative comparisons of different context aggregation manners in
the SCE layer. “Avg-pooling & MLPs” aggregates neighbor context
with an average-pooling layer and two successive MLP layers with BN

and ReLU. “Max-pooling” denotes a max-pooling layer.

mAP5◦ mAP20◦

Avg-pooling & MLPs 61.48 81.53
Max-pooling & MLPs 62.75 81.86
1× k kernels Conv. 62.88 81.91

Grouped Conv. 63.43 82.46

TABLE 11
The different combination strategies of three types of neighbors. SN:

the spatial neighbors. FN: the feature-space neighbors. GN: the
global-graph neighbors. CCI: the Cross-Context Interaction layer.

RT(ms): the average runtime. FLOPs(G): the floating point operations
per second.

baseline SN FN GN CCI mAP5◦ mAP20◦ RT FLOPs
✓ 25.95 54.63 5.01 0.86
✓ ✓ 30.17 58.13 5.77 1.55
✓ ✓ 31.15 59.66 5.83 1.55
✓ ✓ 30.73 60.97 10.18 1.58
✓ ✓ ✓ 33.22 61.66 6.51 2.31
✓ ✓ ✓ 33.70 62.98 11.00 2.34
✓ ✓ ✓ 33.83 62.60 10.89 2.34
✓ ✓ ✓ ✓ 36.03 63.96 11.63 3.10
✓ ✓ ✓ ✓ ✓ 37.83 65.94 13.90 3.35

in which NCMNet is retrained under corresponding training sets.
In contrast to conventional approaches, our method demonstrates
effectiveness even with low inlier ratios. Although the ratio test
proves beneficial in reducing outliers of inputs, it also makes
many important inliers discarded, which will diminish overall
performance. The results also demonstrate that our network is
more robust under challenging conditions, i.e., there are sufficient
inliers but many outliers in the initial correspondences.

Combinations of Neighbors. In this work, we propose to find
three types of neighbors for each correspondence for adapting
complex matching situations. Here, we verify the effectiveness and
efficiency of this design by comparing different combinations of
three types of neighbors. We select LFGC [18] as the comparative
baseline, which contains 12 sequential ResNet blocks. We insert
the different combinations of neighbor embeddings and the CCI
layer into the middle of the baseline for mining different neighbor
consistency information. For two or three types of neighbor con-
text features, we directly adopt the concatenation operation along
the channel dimension to fuse their information. Table 11 reports
the performance gains and computational overhead. It can be seen
that better performance improvements are obtained when using
either one or two types of neighbors. When employing three types
of neighbors simultaneously, we can acquire the best performance
gains compared with the baseline, which further demonstrates
the three types of neighbors are complementary. However, we
find the construction of global-graph neighbor requires more
runtime compared to the other two neighbors. This is because
GCN operation needs a high computational cost, especially for
more input correspondences. With above observations, a more
efficient GCN strategy, such as the graph clustering [90], topology
sampling [91] and pipeline parallelism [92], is necessary for some
real-time feature matching applications. In the future, how to

TABLE 12
The effectiveness of the two proposed improvements. EGS: the

enhanced global-graph space. GCA: the grouped cross-attention
branch.

baseline EGS GCA EGS+GCA

mAP5◦ 63.43 64.85 64.40 65.83
mAP20◦ 82.46 82.60 82.68 83.14

improve the efficiency of global-graph construction is our main
focus.

(a) (b)

Fig. 9. The influence of different numbers of input matches.
SIFT and nearest neighbor search are adopted to establish
500/1000/2000/4000/8000 matches. (a) The average runtime (ms) and
(b) mAP5◦ (%) are shown.

Parametric Analysis of k. In the NC block, we seek k-nearest
neighbors for each correspondence in different neighbor search
spaces to construct neighbor embeddings. A suitable neighbor
number k is extremely important for extracting neighbor context.
Fig. 8 (b) gives the results of different combinations of neighbor
number k. Our NCMNet with the combination of k = (9, 6)
attains the best performance over other settings. Therefore, the k
in the two pruning modules is set to 9 and 6, respectively.

Effectiveness of improvements. Based on the previous ver-
sion [36], we propose an enhanced global-graph space and a
grouped cross-attention branch in the CCI layer. The former uti-
lizes the spatial consistency inherent in correspondences to com-
plement the feature consistency used in [36]. It aims to construct
a global connected graph by the affinity relationship between
correspondences from spatial and feature aspects to enhance the
long-range dependencies. The latter explores rich inter-neighbor
information interaction based on an effective hierarchical grouped
manner to replace the single cross-attention operation in [36].
We select NCMNet [36] as the baseline, and then add the two
proposed operations to the baseline. As shown in Table 12, when
equipped with the enhanced global-graph space or the grouped
cross-attention branch, the baseline’s performance is further im-
proved. Enhanced global-graph space is able to provide more
reliable globally consistent neighbors. Grouped cross-attention
branch can enrich the information integration of three neighbor
features. The proposed NCMNet+ delivers the best performance,
which demonstrates the effectiveness of two improvements.

Different number of inputs. The number of input corre-
spondences may change with different estimation methods, which
will affect the effectiveness and efficiency of pruning works.
So we test the effect of different numbers of correspondences
estimated by SIFT and nearest neighbor search in terms of
performance and runtime. The pruning models are trained using
2000 correspondences. As illustrated in Fig. 9, as the number of
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OANet++ MS2DGNet NCMNet NCMNet+RANSAC

Fig. 10. Visualization results of correspondence pruning and image registration. From left to right columns: RANSAC [20], OANet++ [37], MS2DG-
Net [28], NCMNet [36], and NCMNet+. In the 1st and 3rd rows, red lines denote outliers and green lines denote inliers retained by methods. The
checkerboard images and warped images are shown respectively on the left and right parts in the 2nd and 4th rows.

inputs increases, the networks might obtain better performance
due to the increase of potential inliers. Meanwhile, the runtime
also increases dramatically due to the expensive computational
overhead of multiple GCN operations. Nevertheless, as mentioned
in the above ablation, we believe that this problem can be further
mitigated by using more efficient GCN strategies [90], [91], [92]
in the future.

5 EXTENDED TASKS

Accurate feature correspondences between two images are impor-
tant preconditions for a variety of feature matching based tasks.
In this section, we will extend our methods to several important
feature-based tasks, including remote sensing image registration,
point cloud registration, 3D reconstruction, and visual localization.

5.1 Remote Sensing Image Registration

Image registration aims at estimating the geometric transforma-
tion and then aligning the overlapping region between source
and target images. Remote sensing image registration [93] is a
crucial process for some tasks (e.g., image fusion, multispectral
classification, and change detection), which also needs accurate
feature correspondences [94], [95]. Correspondence pruning can
provide reliable inliers for accurate image registration.

Datasets. We select 57 low-altitude remote sensing image
pairs with various types and scenes provided by [96], [97].
They provide initial correspondences generated by using SIFT
feature [7], where inliers and outliers are manually labeled. These
image pairs involve large viewpoint changes as well as extreme
patterns. Hence, encountering a high number of outliers is un-
avoidable.

Evaluation. Due to the lack of sufficient data to train net-
works, we directly adopt network models trained on YFCC100M
dataset for testing the generalization ability. We use the root
mean square error (RMSE), median error (MEE), as well as
maximum error (MAE) as evaluation metrics to measure the

TABLE 13
Quantitative registration results on remote sensing image pairs. The

average RMSE, MAE, MEE and runtime (RT ) are used for
evaluation. ↓ means that a lower value is better.

Method RMSE↓ MEE↓ MAE↓ RT (ms)↓
RANSAC [20] 50.60 55.94 164.29 291.69
LFGC [18] 10.40 8.80 43.68 45.08
OANet++ [37] 7.17 8.79 34.10 73.80
MS2DG-Net [28] 6.72 5.11 42.48 72.84
CLNet [27] 10.90 11.07 47.87 73.76
NCMNet [36] 1.55 0.01 23.88 73.47
NCMNet+ 1.39 0.01 23.03 72.83

registration performance of methods. These metrics are formulated
as follows:

RMSE =

√√√√ 1

L

L∑
i=1

∥ri −F (si)∥22, (22)

MEE = median {∥ri −F (si)∥2}
L
i=1

, (23)

MAE = max {∥ri −F (si)∥2}
L
i=1

, (24)

where ri and si represent the keypoint coordinates of the reference
image and the sensed image, respectively. F is the transformation
function estimated by methods between two matching images.
L refers to the count of keypoint coordinates. ∥·∥2 denotes the
Euclidean norm of vectors. median(·) and max(·) calculate the
corresponding median and maximal values, respectively.

Results. Table 13 gives the quantitative results with some
correspondence pruning methods, where runtime indicates the reg-
istration time after obtaining refined correspondences. RANSAC
with 1k iterations is used for comparison. For learning-based
methods, we first utilize network models to filter outliers, and
then adopt RANSAC with 50 iterations to further process re-
tained correspondences. Compared with these competitors, our
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TABLE 14
Comparative results of point cloud registration on 3DMatch [98]. The

average RR, IP and IR are used for evaluation.

Descriptor FCGF FPFH

Method RR IP IR RR IP IR

RANSAC [20] 86.57 76.86 77.45 40.05 51.52 34.31
LFGC [18] 91.56 77.49 80.85 73.66 64.60 58.67
OANet++ [37] 91.87 77.76 80.49 72.51 62.62 55.96
MS2DG-Net [28] 92.05 77.76 84.35 78.54 67.99 72.10
CLNet [27] 91.81 77.99 82.72 77.94 68.26 67.12
NCMNet [36] 92.54 78.28 84.70 78.60 69.64 70.13
NCMNet+ 92.98 78.69 85.92 79.71 70.19 72.92

CLNet NCMNet NCMNet+

Fig. 11. Visualization results of correspondence pruning on
3DMatch[98]. From left to right columns: CLNet [27], NCMNet [36], and
NCMNet+. Green and red lines represent the recognized inliers and
outliers, respectively.

NCMNet and NCMNet+ show superior performance. NCMNet+
achieves the most optimal outcomes in terms of RMSE, MAE,
and MEE. Moreover, visualization results for correspondence
pruning and image registration on two typical image pairs are
illustrated in Fig. 10. We see that the proposed methods can obtain
more accurate results and preserve more inliers compared to other
works.

5.2 Point Cloud Registration
Point cloud registration [99], [100], [101] needs to determine the
optimal pose transformation for aligning a pair of point clouds,
which is a critical problem in point cloud processing. Similar
to image feature matching, it can be solved by establishing
reliable point-to-point feature correspondences, where outliers are

CLNet NCMNet NCMNet+

Fig. 12. Visualization results of point cloud registration on 3DMatch[98].
From left to right columns: CLNet [27], NCMNet [36], and NCMNet+.

inevitable due to the limitation of 3D feature extraction methods
and the limited overlaps. Therefore, correspondence pruning is one
of the indispensable steps for handling 3D correspondences with
numerous outliers.

Datasets. Owing to the different dimensions of correspon-
dences, we use the indoor 3DMatch [98] dataset to retrain and
test the network models. In the test set, there are 1, 623 point
cloud fragments with partial overlap derived from eight distinct
scenes.

Evaluation. We use both the learned fully convolutional geo-
metric features (FCGF) [102] and the traditional fast point feature
histograms (FPFH) [103] as feature extraction methods to con-
struct initial correspondences. Following the training setting [104],
networks are trained with 50 epochs on FCGF and then tested on
both FCGF and FPFH. We adopt the registration recall (RR), the
most pivotal criterion in point cloud registration, to evaluate the
performance. It indicates the proportion of successful alignments,
where the rotation error must be below 30cm and the translation
error must be less than 20◦. Meanwhile, Inlier Precision (IP : the
ratio between identified inliers and retained correspondences) and
Inlier Recall (IR: the ratio between identified inliers and actual
inliers) are used for evaluating the performance of correspondence
pruning.

Results. Quantitative comparative results on two settings are
shown in Table 14. Here, RANSAC uses 1k iterations for com-
parison. We see that our NCMNet+ is able to obtain the best IP
and IR on the two settings, which demonstrates the outstand-
ing correspondence pruning performance. For RR, the proposed
NCMNet+ outperforms all comparative methods due to the better
correspondence results. Furthermore, Fig. 11 and Fig. 12 give
two visualization results of some methods on both correspondence
pruning and registration, respectively, which further demonstrates
the effectiveness of our methods.

5.3 3D Reconstruction

The process of 3D reconstruction entails recovering a 3D model
of an object or scene using several 2D images [105]. Usually,
the performance of reconstruction relies greatly on the quality of
correspondences in 2D image pairs. Therefore, we evaluate the
generalization of networks for the 3D reconstruction task.
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TABLE 15
Ouantitative comparative results of 3D reconstruction on the

different-scale datasets. R+M: ratio test + mutual check

Dataset Method Reg Sparse Dense TL Obs Reproj↓

Fountain

OANet++ [37]
MS2DG-Net [28]

CLNet [27]
NCMNet [36]

NCMNet+

11
11
11
11
11

12456
10584
12029
12319
14354

306598
313808
320722
327812
373133

4.88
4.86
4.87
4.85
5.01

5535
4681
5326
5609
6331

0.45px
0.45px
0.46px
0.46px
0.43px

Herzjesu

OANet++ [37]
MS2DG-Net [28]

CLNet [27]
NCMNet [36]

NCMNet+

8
8
8
8
8

7406
7229
7498
7539
7773

278702
254100
245425
261289
282455

4.24
4.22
4.25
4.27
4.31

3944
3815
3981
3998
4146

0.49px
0.48px
0.49px
0.50px
0.49px

South-Building

OANet++ [37]
MS2DG-Net [28]

CLNet [27]
NCMNet [36]

NCMNet+

126
127
127
128
128

128245
110953
119784
136360
121082

2350753
2297649
2195264
2199067
2386528

5.36
5.65
5.53
5.26
5.68

5456
4940
5216
5608
5277

0.58px
0.57px
0.58px
0.59px
0.58px

Gendarmenmarkt

OANet++ [37]
MS2DG-Net [28]

CLNet [27]
NCMNet [36]

NCMNet+

958
976
973
970
1006

334503
324324
333665
349821
368701

1512576
1358179
1238846
1391622
1635901

5.56
5.73
5.71
5.45
5.71

1942
1882
1950
2057
2001

0.79px
0.79px
0.78px
0.80px
0.78px

Alamo

OANet++ [37]
MS2DG-Net [28]

CLNet [27]
NCMNet [36]

NCMNet+

806
858
859
838
865

219696
220835
221539
240389
257033

1701979
2036959
2954842
2833031
3147980

11.34
11.29
11.13
10.61
11.68

3020
2907
2857
3034
3064

0.72px
0.72px
0.70px
0.74px
0.72px

CLNet NCMNet NCMNet+

Fig. 13. 3D reconstruction visualization results of the Alamo dataset.
From left to right: the results of CLNet [27], NCMNet [36], and NCMNet+.

Datasets. Following [106], we conduct a sequence of 3D re-
construction experiments utilizing the COLMAP [2] platform. The
testing datasets contain some small and medium scale subsets from
YFCC100M [80]. Specifically, the small scale subsets, including
Fountain (11 images), Herzjesu (8 images) and South-Building
(128 images), utilize the enumeration manner to choose similar
images. As [107], the Bag of Word (BoW) model is selected to
search for the top 20 similar images on the medium scale subsets,
containing Gendarmenmarkt (1,463 images) and Alamo (2,915
images).

Evaluation. All the learning-based models are trained us-
ing the YFCC100M dataset with 4, 000 keypoints extracted by
SIFT. We report registered images number (Reg), sparse points
number (Sparse), dense points number (Dense), mean track
length (TL), and reprojection error (Reproj) to evaluate how
models perform in improving the quality of correspondences for
3D reconstruction. Especially, Sparse and Dense are the main
indicators for evaluation.

Results. The quantitative comparison results for 3D recon-

TABLE 16
Quantitative comparative results of visual localization on the Aachen

Day-Night v1.1 dataset [109], [110]. The percentage of correctly
localized queries at different thresholds is reported.

Methods
Day Night

(0.25m, 2◦) / (0.5m, 5◦) /(5m, 10◦)

SIFT [7] 65.3 / 72.0 / 78.9 16.8 / 19.9 / 27.7
LFGC [18] 77.4 / 82.8 / 86.9 30.9 / 34.6 / 41.4
OANet++ [37] 79.1 / 84.8 / 89.0 33.0 / 37.2 / 45.5
MS2DG-Net [28] 76.8 / 83.3 / 86.9 26.2 / 31.4 / 42.4
CLNet [27] 82.8 / 89.4 / 93.4 39.8 / 50.8 / 61.8
NCMNet [36] 82.8 / 91.1 / 95.0 43.5 / 53.9 / 69.1
NCMNet+ 84.2 / 92.5 / 96.0 48.2 / 59.7 / 75.4

struction are tabulated in Table 15. These learning-based corre-
spondence pruning methods are adopted to improve the qual-
ity of correspondences. Our methods consistently yield better
performance when compared with the other works. Meanwhile,
as shown in Fig. 13, the visualization results on the Alamo
further indicate the validity of our methods. Our NCMNet+ gives
more complete reconstruction results compared to the other two
methods, especially in the red box.

5.4 Visual Localization
Visual localization aims at estimating the 6 Degree-of-Freedom
(DoF) camera pose of a query image with respect to a visual
representation of reference scene, such as a 3D scene model [6],
[108]. The process of 3D structure-based visual localization needs
employing local features to generate 2D-3D correspondences for
pose estimation. Correspondence pruning is necessary for further
identifying adequate and accurate correspondences, which is cru-
cial for successful visual localization.

Datasets. We perform the experiment on the Aachen Day-
Night v1.1 dataset [109], [110] which focuses on the localization
under severe illumination changes. The dataset includes 6,697 day-
time reference images, 824 daytime query images, and 191 night-
time query images taken from mobile devices. We evaluate perfor-
mance on the Long-Term Visual Localization benchmark [111].

Evaluation. The correspondence results obtained by network
models are integrated into the open-sourced localization pipeline
HLoc [112]. Specifically, we construct 2,000 initial correspon-
dences with SIFT between query and reference images, and then
use correspondence pruning methods to obtain reliable correspon-
dences. We utilize COLMAP [2] to triangulate a reference 3D SfM
model and recover their poses. The network models are trained on
the YFCC100M datasets with 2,000 SIFT keypoints. We use the
proportion of correctly localized queries at various thresholds as
the evaluation metric.

Results. The quantitative comparative results for visual local-
ization are shown in Table 16. We can see that our NCMNet+
outperforms all baselines by a significant margin in both daytime
and nighttime scenes at different thresholds. For severe illumi-
nation changes, our methods are able to deliver superior results
than competitors, demonstrating their superiority and robustness
for challenging visual localization.

6 CONCLUSION

In this work, we propose an effective architecture, called Neighbor
Consistency Mining Network (NCMNet), for challenging corre-
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spondence pruning. A global-graph space has been developed to
search for consistent neighbors by explicitly modeling the long-
range affinity relationship between correspondences with a global
connected graph. Meanwhile, we design a neighbor consistency
block, which progressively mines the consistency of three types
of neighbors, for enhancing the robustness of method. We also
introduce spatial consistency to enhance the reliability of global-
graph space and hierarchical grouped manner to enrich the inter-
neighbor information integration. Comprehensive experiments on
different benchmarks and extended tasks have been conducted to
validate the effectiveness and generalization ability of NCMNet
and NCMNet+, demonstrating clear superiority over the state-of-
the-arts.
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